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Abstract. In this paper, we consider the coherent component of the electromagnetic wave field 
inside random media. The subject of our interest concerns a random medium, consisting of a 
statistical ensemble of different scattering species and artificial material structures developed 
on base of dielectric or metallic resonant or non-resonant particles. The starting point of our 
theory is the multiple scattering theory, the averaged electric field satisfies a Dyson equation 
with  a  mass  operator  related  to  the  effective  dielectric  permittivity  of  the  homogenized 
structure. Quantum multiple scattering theory has been transposed into this electromagnetic 
case. We give a formal solution for the mass operator by introducing the T-matrix formalism. 
We show that the T-matrix satisfies a Lippman-Schwinger equation. Then, we introduce the 
Quasi-Crystalline Coherent Potential Approximation (QC-CPA), which takes into account the 
correlation between the particles with a pair-distribution function. The mass operator includes 
geometric effects, caused by resonant behavior due to the shape and size of particles, cluster 
effects  because  of  correlations  between  particles.  Significant  modifications  of  particle 
scattering properties can be observed.

1.Introduction

The first intent of this paper is to discuss the relation between the Dyson equation for electromagnetic 
scattering of heterogeneous random media and the effective dielectric constant which characterizes the 
coherent part of an electromagnetic wave propagating inside a random medium containing metallic or 
dielectric particles. In this paper we show that we can obtain a general expression of the effective 
dielectric constant, which is the solution of a closed system of equations. In the high frequency limit 
the expression includes the vectorial case generalization of the result obtained by Keller, which has 
been derived, using a scalar theory. We obtain an important tensorial generalization of the notion of 
effective permittivity. The description of electromagnetic waves propagation in random media in terms 
of the properties of the constituents has been studied extensively in the past decades [1-19]. In most of  
published works, the basic idea is to calculate several statistical moments of the electromagnetic field 
to understand how the wave can interact with the the random medium [7, 9, 10, 11, 14, 15].
In the second section of this paper, we are concerned by the first moment which is the average electric 
field. Under some assumptions, it can be shown that the average electric field propagates as if the 
medium where homogeneous but with a renormalized permittivity, called effective permittivity. We 
introduce the multiple scattering formalism, the Dyson Equation and the Mass operator. We discuss 
the different hypotheses under which the effective medium theory is valid. The calculation of this 
parameter  has a long history which dates back from the work of  Clausius-Mossotti  and Maxwell 

 To whom any correspondence should be addressed.1

properties of the effective medium

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012023 doi:10.1088/1742-6596/738/1/012023

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



Garnett [19]. Most of the studies are concerned with the quasi-static limit where retardation effects are 
disregarded  [17-24].  In  order  to  take  into  account  scattering  effects,  quantum multiple  scattering 
theory has been transposed into the electromagnetic case [5, 7, 9, 10, 11, 14, 15], but as a rigorous 
analytic solution cannot be derived, several approximation schemes have been developed [5, 7, 10, 11, 
14, 15, 25-36]. In section 3, we describe the Quasicrystalline Coherent Potential Approximation (QC-
CPA) which takes into account the correlation between the particles [12, 14, 25-28].  In this section we 
examine the different steps to obtain the system of equations verified by the effective permittivity 
under  the (QC-CPA) approach.  In  section 4,  we add some new approximations to  the (QC-CPA) 
approach which give us a tractable equation for the effective permittivity. The expression obtained 
contains the low frequency limit of the (QC-CPA) approach. At this limit, the (QC-CPA) equations can 
be written as a generalized Maxwell Garnett formula and are proven to be in good agreement with the 
experimental results [13, 14, 37-39]. Furthermore, the formula obtained contains also the approximate 
formula  due  to  Keller,  which  has  been  derived  in  using  scalar  theory,  but  seems  to  be  in  good 
agreement with the experimental data for particles larger than a wavelength [40], these results are 
described in section 5. In section 6, we discuss the different results of this paper and the possible 
extension to magnetic response of the theory of Dyson equation for multiple scattering in random 
media  with  disordered high-index dielectric  scatterers.  This  opens  up the  developing field  of  all-
dielectric nanophotonics which allows to control both magnetic and electric response of structured 
matter.

2.Dyson equation and effective permittivity
 In  the  following,  we  consider  harmonic  waves  with  e−i𝜔t  pulsation.  We  consider  a  disordered 
ensemble of N ≫ 1 identical spheres of radius rs  with dielectric function 𝜀s (ω ) within an infinite 
medium with dielectric function 𝜀1(ω ). The field produced at r  by a discrete source located at r0  is 
given by the dyadic Green function                         , which verifies the following propagation equation:                                                                                            

     (1)                                                                                                                                                                                                            

where Kvac  = ω/c  with c  the speed of light in vacuum and

                                                                                                                                                                            

where r1, . . . , rN  are the centers of the particles and          the spherical particle shape:

                                                                                                                                                                (2)
  
 
The equation (1) has a unique solution if we impose the radiation condition at infinity. The multiple 
scattering process by the particles is mathematically decomposed in introducing the Green function      

,   which describes  the propagation within an homogenous medium with permittivity  𝜀1(ω), 
which verifies the following equation:

     (3)

with the appropriate boundary conditions. In an infinite random medium, we have [14, 41, 42]:
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     (4)
 
where                                     .
Using this Green function, we decompose the Green function                         under the following form 
[5, 7, 9, 14, 15]:

     (5)

where the operator notation is used:

     (6)

The potential   ,    which describes the interaction between the wave and the N particles, is given by:

     (7)

     (8)

     (9)

with                                    . It is useful to introduce the T matrix defined by [5, 6, 7, 19, 12, 14, 15]:

   (10)

By iterating equation (5) and comparing it with the definition (10), we show that the T matrix verifies 
the following equation:

   (11)

 If we introduce the T matrix for each scatterer by:

   (12)

we can decompose the T matrix for the system in a series of multiple scattering processes for the 
particles [6, 11, 13, 16]:

   (13)

This T matrix is useful to calculate the average field                 since we have:

   (14)

The equivalent of the potential operator       for the average Green function               is   the mass 
operator       defined by the following equation:

   (15)

As in equation (11), we have the following relationship between the average T matrix and the mass 
operator:
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   (16) 

 or:
   (17)

The mass operator corresponds to all irreducible diagrams in the Feynman representation [5, 7, 9, 11]. 
The equation (15) written in differential form is:

   (18)

For a statistical homogeneous medium we have:
   (19)

 
   (20)

Thus, we can use a Fourier transform:

   (21)

   (22)

 and equation (18) becomes:

   (23)
 
For a statistical isotropic medium, we have:

   (24)
 
with                          and then:

   (25)

   (26)

In the following, we introduce two effective permittivity functions        and        defined by:

   (27)

   (28)

 and (26) is written:
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   (29)

 The Green function can be expressed in the space domain by the following formulation:

   (30)

After integration on the solid angle in equation (30) given by the expressions (A1) and (A2) in the 
appendix, we obtain the expression:

   (31)

where we have supposed that                                                 and                                                  .
                                    
Using the residue theorem, we easily evaluate these integrals. However, we disregard the longitudinal 
excitation, which are solutions of                             and                             since we only consider the 
propagation of the transversal electromagnetic field.
Furthermore, we see that the contribution of the pole K = 0 in the second term of equation (31) is null. 
In fact, the dyadic ∇∇ operates on a constant as we have                            for this pole. Hence, we 
obtain the following expression for the Green function:

   (32)

where Ke i  are the roots of                                              ,    , the roots verify the equation  Im(Ke i) > 0  
imposed by the radiation condition at infinity.  Sheng has called the roots Ke i the quasi-modes of the 
random medium [9, 31]. If we only consider the root Ke = Ke j which has the smallest imaginary part 
(Im(Ke j) = mini[Im(Ke i)]) and then the smallest exponential factor in equation (32), we define the 
effective permittivity by                                      . The average Green function is then equal to the 
Green function for an infinite homogenous medium with permittivity 𝜀e (ω ):

   (33)
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where

  (34)

Thus, the effective medium approach is valid if we omit the longitudinal excitation in the medium and 
if the propagative mode with the smallest imaginary part is the main contribution in the development 
(32).

3.The coherent-potential and quasi-crystalline approximations
Previously, we have shown how the mass operator is related to the effective permittivity. To calculate 
the mass operator,  we can use equations (13) and (17).  However,  we can improve this system of 
equations,   thus  we rewrite  the  Green function development  (5)  by replacing the  Green function                          

with            :

   (35)

where we have introduced a new potential         :

   (36)

   (37)

   (38)

As in the previous section, we introduce a T matrix:

   (39)

which can be decomposed as following:

   (40)

where we have defined a renormalized T matrix for the particles:

   (41)

We impose the following condition on the average field:

   (42)

 or,

   (43)
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considering equation (39). The condition (42) is the Coherent-Potential Approximation (CPA) [9, 11, 
14, 25]. The expressions (43) and (40) form a closed system of equations for the unknown permittivity 
𝜀e(ω). At the first order in density of particles, this system of equations gives:

   (44)

In Fourier-space, the T matrix for one scatterer verifies the property:

   (45)

where      is  the T matrix for a particle located at  the origin of coordinates.  The average of the 
exponential  term,  introduced  in  equation  (44)  with  the  equation  (45),  gives  for  a  statistical 
homogeneous medium:

   (46)

   (47)

where we have defined the density of scatterers n = N /       with      the volume of the random medium. 
The condition (44) becomes:

   (48)

This CPA condition has been used in several works [9, 31, 43]. It is worth mentioning that operator                                         
is  not  the T matrix describing the scattering by a particle  of  permittivity 𝜀s(ω) 

surrounded  by  a  medium  of  permittivity  𝜀e(ω).  To  describe  this  electromagnetic  interaction,  the 

operator (38) should have the following form:

   (49)

However, we see that                           is different from  the operator in equation (38), and especially 
we have                                                          for                                 , which does not correspond to  
definition (49), where                                       when r is outside the particle. 
Thus,               is a non-local operator and cannot be obtained from the classical Mie theory [3, 25]. To 
overcome this difficulty, in some works [9, 43]           is replaced by the scattering operator of a 
”structural  unit”.  Nevertheless,  this  approach  does  not  seem to  have  any  theoretical  justification. 
Hence, we prefer to use the more rigorous approach introduced in the scattering theory by disordered 
liquid metal [28] and adapted in the electromagnetic scattering case by Tsang et al.  [11, 14]. 
In this approach, the non-local term                      is correctly taken into account by averaging 
equations (39) where we use the correct potential                   ,  defined by (38). A system of 
hierarchical  equations  is  obtained  where  correlation  functions  between  two or  more  particles  are 
successively introduced. 
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The  chain  of  equations  is  closed  by  using  the  Quasi-Crystalline  Approximation  (QCA),  which 
disregards the fluctuation of the effective field, acting on a particle located at rj, due to a deviation of a 
particle located at ri  from its average position [26]. 
This approximation describes the correlation between the particles, only with a two-point correlation 
function                                                             . Under the QC-CPA scheme, we obtain the following 
expression for the mass operator [11, 14, 25, 28]:

   (50)

   (51)

 where
   (52)

   (53)

   (54)
and

   (55)

   (56)

    (57)

If we rewrite the potential (54) under the following form:

   (58)

where we have defined a new wave number                                                       , we see that the 
operator              is the T matrix for a scatterer of permittivity                                             in a medium 
of permittivity         . As described in the previous section, the effective propagation constant Ke  is the 
root, which has the smallest imaginary part, of the equation:

   (59)

 where the mass operator is decomposed under the form (24). Once the effective wave number Ke   is 
obtained, the effective permittivity is given by:

   (60)

4.Some further approximations
Solving numerically the previous system of equations (50-60) is a difficult task. However, for the low 
frequency limit of this system of equation, an analytical solution can be obtained and has shown to be 
in good agreement with the experimental results [11, 14]. We have also to mention that the numerical 
resolution of the quasicrystalline approximation without the coherent potential approximation has been 
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developed [13, 38]. To reduce the numerical difficulties for this system of equations (50-60), we add 
two new approximations to the QC-CPA scheme:
➛ A far-field approximation, for an incident plane wave:

   (61)

transverse to the propagation direction       :

   (62)

where                                   and                                 , the scattered far-field, by a particle within a 
medium of permittivity 𝜀e(ω),  is described by an operator                       . We obtain the following 

equation :

   (63)

which verifies transversality conditions:

   (64)

   (65)

Moreover, the scattered field in the general case is expressed with the operator             by:

   (66)

Using the properties of the Green function in equation (66), we obtained the scattered far-field in 
function of the operator                        , and comparing the result with equation (63), we can write:

   (67)

Our far-field approximation disregards the longitudinal component and the off-shell contribution in the 
operator            , and we write:

   (68)

   (69)

 where the last equality comes from the properties (64-65).

➛ A forward scattering approximation: for scatterers whose dimensions are large compared to a 
wavelength, the magnitude of the scattered field is predominantly located in the forward direction 
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(i.e.                                                         ). With our forward approximation we only conserve  the 
contribution of the amplitude of diffusion                      in the direction of the incident wave        . 
Using the hypothesis (68), we can write:

   (70)

   (71)

   (72)
 where:

   (73)

with                               given by the Mie theory [3, 4, 44]. It is worth mentioning that the 
approximation (71) is also valid for small scatterers (Rayleigh scatterers). 
In this case, the scattering amplitude                 does not depend on the directions of the incident       
and scattered       wave vectors, since we have:

   (74)

 From equation (67), we show that:

   (75)

 
and we also obtain the coefficient                        :

   (76)

Furthermore, we see from equation (51), that for the order zero in density, we have:

   (77)

and the forward approximation (71) can be applied to the operator                         in the limit of low 
density. We will suppose that the forward approximation is valid for the operator whatever the order in 
density and we write:

   (78)

   (79)

With this hypothesis, only the path of type 1 in figure 1 is considered. This approximation also implies 
that the operator                       is transverse to the propagation direction        .
From the previous hypothesis and the QC-CPA equations (51), we obtain an expression of                   :

   (80)
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where we have introduced the notation:
 

   (81)

   (82)

Then, we have:

   (83)

Using the classical properties of the Fourier transform, we obtain:

   (84)

where we have used the translation invariance of the Green function:                                                  . 
The Dyadic Green function has a singularity which can be extracted in introducing the principal value 
of the Green function [13, 14, 41, 45]:

   (85)

where the principal value is defined by:

   (86)

with              a test function and               a spherical volume of radius a  centered at r . This principal 
value can be easily calculated, and we obtain [11, 14]:

   (87)

Using polar coordinate in the integral (84):

   (88)

and the integral on solid angles given in Appendix, we obtain the following result:

   (89)

with

   (90)
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   (91)

where we have assumed                                  because the mass operator (50) is evaluated with this 
value in the equation (59) to obtain the effective permittivity. As the particles cannot overlap, we have                        

              and then                         .  With equations (59, 24, 50, 83, 89), we derive an expression 
for the effective wave number Ke :

   (92)

where the scalar                  is defined by equations (90,91). 
The scalar                        is the forward scattering amplitude:                                            for a 
particle of permittivity                                     within a medium of permittivity 𝜀e . The relationship 

between the effective wave number Ke and the effective permittivity  𝜀e  is given by:

   (93)

5.High frequency and low frequency limits
In section 3, we have derived a general system of equation to obtain the effective permittivity. With 
some approximations we obtain a system which can be solved more easily. We have derived [46] a 

�

Figure 1. Two different paths which contribute to the mass 
operator� in the (QC-CPA) 
approach. Only the path of kind 1 is taken into account in our 
forward scattering approximation (79).
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general formulation for an effective permittivity for a layer of an inhomogeneous random medium 
with different types of particles and bounded with randomly rough surfaces. We obtained an analytical 
expression for Rayleigh-type scatterers for the low frequency limit. This formula is important because 
it  takes  into  account  a  broader  model  of  nanoscale  particles  if  we  introduce  the  regularization 
parameter [46] of the principal value of the Green function. This parameter is linked to resonances of 
the considered scatterer.   We are now going to show that the relation (92) that we have obtained 
contains also the Keller formula [40] in the high frequency limit. This formula has been shown to be in 
good agreement with experimental results for particles larger than a wavelength. The Keller formula 
can be obtained in considering the QC-CPA approach in the scalar case [11, 14]. The equations are 
formerly identical to equation (50-57) where the dyadic Green function

   (94)

 has to be replaced by the scalar Green function:

   (95)

Using equation (A1), the first iteration of the scalar version of equation (51) gives:

   (96)

As was shown by Waterman et al [27], this development is valid if the following condition is verified:

   (97)

In the geometric limit, the scattering cross section        for a single particle is in good approximation 
given by                               . 
As the cross-section is connected to the scattering amplitude by the relation                                                             
and as the maximum density is                           , we see that for particles larger than a wavelength the 
condition (97) is satisfied:

   (98)

The equation (96)  has been derived by Keller [40] and this expression is in good agreement with 
experiments for large particles compared to the wavelength. If we now use a Taylor development in 
equation (92), we obtain:

   (99)

This  development  is  valid  if  the  condition  (97)  is  satisfied.  In  the  geometrical  limits,  we  can 
approximate the function                  in definition (90). For                         we have from equation (91):

 (100)
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 The relation (99) becomes:

 (101)

We see that equation (101) differs from the equation (96), only by the factor                  , due to the 
singularity of the vectorial Green function and this factor cannot be derived from the scalar theory 
developed by Keller. We also notice that to solve numerically our new equation (92), we can utilize the 
same procedure that is used for the original Keller formula (96) with the Muller theory. Therefore we 
have derived a numerical tractable approximation to the (QC-CPA) scheme.

6.Discussion
The intent of this paper has been to establish a new formula for the effective dielectric constant which 
characterizes  the  coherent  part  of  an  electromagnetic  wave  propagating  in  a  random  medium   
containing disordered particles. The particles can be metallic, dielectric, spherical or non-spherical. 
We have discussed the  relation between the  Dyson equation and the  effective  permittivity  of  the 
medium.  With this formulation, we have introduced the mass operator. The mass operator or self-
energy operator includes geometric effects, caused by resonant behavior due to the shape and size of 
particles, cluster effects because of correlations between particles.  The problem is solved if we obtain 
an expression of the mass operator. For that, the relation between the mass operator and the scattering 
operator is expressed. We give a formal solution for the scattering operator by introducing the T-
operator  formalism.  We show that  the  T-operator,  or  the  scattering  operator  satisfies  a  Lippman-
Schwinger equation.  This operator includes all the multiple scattering. Then we have introduced the 
Quasi-Crystalline  Coherent  Potential  Approximation  (QC-CPA),  which  takes  into  account  the 
correlation  between  the  particles  with  a  pair-distribution  function.  This  function  describes  the 
correlation  between  two  distinct  particles.  To  simplify  the  numerical  calculation  of  the  effective 
permittivity  under  the  (QC-CPA)  approach,  we  have  added  far-field  and  forward  scattering 
approximations to (QC-CPA) scheme. In the low frequency limit, our equation is identical with the 
usual  result  obtained  under  the  (QC-CPA)  scheme  and  we  have  generalized  the  formulation  for 
Rayleigh scatterers by introducing near plasmon resonances. For particles whose dimensions are of the 
order of wavelength or in the high frequency limit the expression includes the generalization, in the 
vectorial case, of the result obtained by Keller. We obtained an important tensorial generalization of 
the notion of effective permittivity. This technique of Dyson equation in wave multiple scattering by 
spatially disordered discrete medium leads to a dielectric permittivity tensor. This expression of the 
permittivity  developed  in  this  paper  has  been  extended  to  random media  with  different  types  of 
particles and bounded by rough surfaces [46]. This extended formulation of the effective permittivity 
is  then  used  to  calculate  the  coherent  fields  and  incoherent  intensities  scattered  from  a  three-
dimensional disordered medium with discrete scatterers and randomly rough interfaces. 
The  authors  [47]  show  the  physical  nature  of  diamagnetic  property  in  the  effective  magnetic 
permeability  at  coherent  electromagnetic  wave  multiple  scattering  by  statistical  ensemble  of 
independent perfectly reflected non–magnetic small spherical particles. This observation is made with 
the  aid  of  the  technique  of  Dyson  equation  developed  in  this  paper  for  a  random medium with 
disordered particles.

Appendix 

(A1)

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012023 doi:10.1088/1742-6596/738/1/012023

14



(A2)
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