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Abstract. Density function theory, a subfield of quantum mechanics (QM), in combination with 
molecular mechanics (MM) has opened the way to engineer new artificial enzymes. Herein, we 
report theoretical calculations done using QM/MM to examine whether the regioselectivity and 
rate of chlorination of the enzyme chloroperoxidase can be improved by replacing the vanadium 
of this enzyme with niobium through dialysis. Our calculations show that a niobium substituted 
chloroperoxidase will be able to enter the initial steps of the catalytic cycle for chlorination. 
Although the protonation state of the niobium substituted enzyme is calculated to be different 
from than that of the natural vanadium substituted enzyme, our calculations show that the 
catalytic cycle can still proceed forward. Using natural bond orbitals, we analyse the electronic 
differences between the niobium substituted enzyme and the natural enzyme. We conclude by 
briefly examining how good of a model QM/MM provides for understanding the mechanism of 
catalysis of chloroperoxidase.  

1.  Introduction 
Density functional theory (DFT), a subfield of quantum mechanics (QM), is successful in calculating 
the ground state energy of large molecules, but it cannot be applied to macromolecules like enzymes 
which have thousands of atoms [1]. On the other hand, molecular mechanics (MM), which applies 
Newtonian mechanics to molecules, has been applied to model the conformational states of enzymes; 
however, it does poorly in modeling chemical reactions in which covalent bonds are broken or formed. 
For modeling chemical reactions, DFT is needed. The combination of the DFT and MM (i.e., 
“QM/MM”) has been applied to study a number of enzymes [2]. In QM/MM studies, DFT is used for 
modeling some portion of the active site, and MM is used to model the remainder of the enzyme. 

Herein we utilize QM/MM to study vanadium chloroperoxidase (VCPO), which catalyzes 
chlorination of electrophilic substrates and compare our results with the literature [3-4]. QM/MM has 
also been applied to determine the 51V chemical shifts of VCPO as well as the peroxo form of the enzyme 
[5]. DFT studies [6] have been carried on just the vanadium cofactor and methyl amine and guanidine 
to model the active site; however, QM/MM studies showed that long range electrostatic forces have very 
important effects on the protonation state of the vanadium co-factor [3].  

VCPO catalyzes oxidation of chloride in the presence of cellular hydrogen peroxide: 
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In this process, the vanadium co-factor remains in the same oxidation state (i.e., +5) throughout the 
catalytic cycle, which is outlined in figure 1.  

 

 
Figure 1. Catalytic cycle of VCPO (from [3]) 
 
An X-Ray crystal structure at a resolution of 2.15  reveals the active site as depicted in figure 2 [7]. 

This resolution is such that one cannot ascertain the protonation state of the VO4 co-factor. The VO4 co-
factor has a trigonal bipyramidal structure and is held in the enzyme by hydrogen bonds from Lys353, 
Ser402, His404, Arg360 and Arg496 and possibly by a weak bond to His496. One can easily remove 
the vanadium cofactor by dialysis and reincorporate it [8]. There is no reason in principle why some 
other metal could not be substituted in the reincorporation step.  

Our long range goal is to determine whether we can improve the rate and regioselectivity of VCPO 
by altering the transition metal in VCPO. We thus began this study by determining whether replacement 
of vanadium with niobium would even lead to a viable enzyme that could enter the catalytic cycle of 
VCPO.  

2.  Theory  
The QM/MM approach to modelling of enzymes involves dividing the enzyme into a quantum 
mechanical part and molecular mechanical part. Thus, the overall energy of the enzyme is calculated as 
follows [9]: 
 ( )

/
total MM QM MM

MMpart QMpart QM MME E E E   (1) 
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The first term, MM
MMpartE , is the MM energy of MM part of the system and is calculated with the OPLS-

AA (Optimized Potentials for Liquid Simulations) force field [10]. 
 

The second term, ( )QM MM
QMpartE , is calculated by DFT and includes electrostatic interactions between the 

QM nuclei and the partial charges on the MM atoms. In DFT, the energy of the system is a functional 
of the probability density and can be factored into contributions from a kinetic energy functional, T[ (r)], 
a potential energy functional, J[ (r)], arising from classical Columbic interactions as well as an 
exchange correlation functional, EXC[ (r)]:  

 
 [ ( )] [ ( )] [ ( )] [ ( )]XCE r T r J r E r   (2) 

To find the energy, one assumes that “fictitious” orbitals, i , can be assigned to represent each electron, 
1, 2, 3, . . . i, . . . N where N is the total number of electrons in the system. The first two terms are 
calculated self-consistently in a way parallel to Hartree-Fock theory.  

The remaining exchange-correlation energy functional is approximated by the adiabatic connection 
method. For this study, we used the hybrid B3LYP functional which involves parameterization as 
follows: 

  
 0 88(1 ) (1 )LSDA B LYP LSDA

XC X XC X C CE a E aE bE cE c E   (4) 
  
The three parameters (a,b,c) were selected to fit a set of reference data (ie, the G2 data base) consisting 
of atomization energies, ionization energies, proton affinities and some total energies. DFT with B3LYP 
gives the energies within 1 kcal/mol for a surprisingly wide variety of systems [1]. Each of the terms of 
equation 4 is a complicated expression. For example, the first term is the following:  
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The probability density is now represented by rs instead of  and a different set of empirical constants  
(A, x0, b and c) are needed.  

The third term of equation (1), /QM MME , includes terms from van der Waals contributions which are 
calculated by MM. Additionally, one must treat the covalent bonds which are cut by the boundary 
between the QM and MM regions. We used the frozen orbital approach of Friesner and co-workers [2] 
in which the coefficients of the basis functions for the orbitals on the boundaries are set to zero; thus, 
the orbitals on the boundaries do not enter the self-consistent field calculation. Instead, molecular 
mechanics type parameters are introduced that provide an accurate energy function. 
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3.  Methods 
QM/MM calculations were done using the software, QSite [11]. The X-ray crystal structure (1VNI) of 
VCPO was downloaded from the Protein Data Bank (www.rcsb.org). QSite provides a preprocessing 
module that selectively removes waters from outside of the active site, i.e., which are more than 5  
from vanadium. Because Impact, the software component of QSite which does MM, cannot process 
metal bonds, the preprocessing module makes the bond order zero between the vanadium and oxygens 
and between V and N of His496. Manually, we adjusted the charge on vanadium to +5 and the charge 
on the oxygens to -1 or -2 depending on whether the oxygen is protonated. This module also optimizes 
the hydrogen bond network and performs a restrained minimization with OPLS-AA force field to 
RMSD<0.3. For the QM calculations, we used DFT with B3LYP and a basis set of LACVP using 
electron core potentials for the metal and 6-31G** for the rest of the atoms in the QM region.. The QM 
region consisted of the side chains of Lys353, His496 with a VO4 or NbO4 cofactor, Asp292, and the 
full residues of Arg360, Arg490, His404, Gly403, and Ser402. Arg360 is adjacent to a Pro361 residue, 
and QSite does not allow backbone cuts in the proline ring. Therefore following the method of the 
literature [3], we converted Pro361 to alanine and included this full alanine residue in the QM part of 
the calculation. MM constraints consisted of the protein backbone and any atoms more than 20  from 
the metal. QM constraints were the amino acid backbone of Arg360, Arg490, His404, Gly403, Ser402 
and His496 ring as well as the hydrogens of Lys353 facing away from the cofactor. 

4.  Results and Discussion 
In order to assess the viability of a niobium substituted chloroperoxidase enzyme entering the catalytic 
cycle, we must first ask a large number of questions such as (a) what is the resting state of the niobium 
substituted peroxidase? (b) what is the lowest energy protonation state of each of the proposed 
intermediates (c) are the proposed steps still favorable upon niobium substitution? After doing QSite 
calculations, Kravitz et al. [3] concluded that the resting state of VCPO is an equilibrium between 1-V 
and 2-V based on the energy of the optimized structures (see figure 2). In our calculations, we find that 
2-V is lower in energy than 1-V by 7 kcal/mole. The optimized structure, 2-V, in comparison to 1-V and 
3-V has bond lengths which are close to the bond lengths of X-ray crystal structure. In particular, for 2-
V, the V-O bond lengths for equatorial oxygens are all 1.69 , and the X-Ray data reveals 1.60  for 
V-O10 and V-O11 and 1.61  for V-O9. One possible explanation for this difference in results from 
those Kravitz et al. is the following. At the time of their research in 2005, QSite could only perform 
calculations on 8000 atoms, and VCPO is over 9000 atoms. Therefore, they did their calculations on a 
truncated version of the enzyme after justifying their truncation by examining the electrostatics of the 
enzyme. But even Kravitz et al. [3] noticed that long range electrostatic forces play a significant role in 
the relative energies of various protonation states of VCPO, and hence it seems possible that their 
analysis of electrostatic effects was incomplete, and their truncation affected the energies that they 
calculated. The other QM/MM study of VCPO neglected to even do calculations on 2-V [4]. 

On substitution with niobium, we find a significant shift in energies of the various protonation states 
of the cofactor. Now, structure 3-Nb becomes lower in energy than either 1-V or 2-V. Since 2-V is lower 
in energy than 3-V, it is puzzling why 3-Nb should be lower in energy than 2-Nb. 

We undertook a study of the natural bond orbitals (NBO) in the optimized structures. Figure 3 
summarizes the results of this study regarding the bond orders between the metal and oxygens. Namely, 
the co-factor of VCPO, (2-V), is actually VO3. Furthermore, these results suggest the cofactor is not 
actually bonded to His496. Raugei et al. [4] in their QM/MM study of VCPO obtained the similar results 
on 1-V and 3-V by calculating Mayer’s bond orders. Since the distance between V-N (2.15 ) is less 
than the sum of the van der Waals radii of V (2.05 ) and N (1.55 ), it is possible that there are 
secondary bonding interactions [12]. 
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Table I. Relative energies (in kcal/mol) of 1-3 shown 
in figure 2. The first column shows the results of 
Kravitz et al. [3]. The remaining two columns show 
the results of the present study where the metal (M) is 
either V or Nb. 

 M=V  M=V M=Nb 

1 0.0 6.7 5.0 

2 0.3 0.0 4.0 

3 6.0 14.1 0.0 

 

 
 
Figure 2. Various possible structures which could be the resting state of the enzyme. QM/MM 
energies in kcal/mol are shown for each structure 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012013 doi:10.1088/1742-6596/738/1/012013

5



 
 
 
 
 
 

 

 

Figure 3. Bond orders based on a NBO study of optimized structures 1-3. Bond lengths were obtained 
from structures optimized by QM/MM (i.e. QSite). 
 

It is 2-V which enters the catalytic cycle of the natural enzyme, VCPO. The question is whether 3-
Nb can enter the analogous catalytic cycle. In other words, is protonation of 3-Nb to yield 4-Nb (figure 
4) favorable? Calculation of the free energy of 3-Nb and 4-Nb shows that protonation is a favorable 
reaction by 258 kcal/mol.  
 

 

Figure 4. First step of the catalytic cycle with a niobium substituted enzyme 
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5.  Conclusions 
We have calculated the energies of various protonation states of VCPO and found 2-V to be the most 
stable. If the vanadium of VCPO were replaced with niobium, we calculated the resting state of the 
enzyme will be a different protonation state (i.e. 3-Nb) than in the natural enzyme. It is still 
thermodynamically very favourable for 3-Nb to enter a catalytic cycle analogous to the one VCPO uses 
to chlorinate substrate. In future work, we will examine whether the niobium substituted enzyme will 
improve the rate of chlorination. This work will certainly have application in industrial processes 
wherein chlorination plays an important role.  

In this conclusion, we would also like to take a step back and consider the kind of modeling that the 
density functional theory affords. For example, Cramer [13] in the introduction of his textbook on 
computational chemistry promises to present no equation without an effort to “provide an intuitive 
explanation for its form and the various terms within it”; however, in presenting the equations of DFT 
such as (5), he has to admit an “utter violation” of this promise since no physical meaning can be 
assigned to any term in (5). Because of this problem in DFT modeling, we should continue the search 
for other complementary ways of modeling matter [14]. 

6.  References 

[1] Koch W and Holthausen M C 2001 A Chemist's Guide to Density Functional Theory (Weinheim, 
Germany: Wiley-VCH Verlag GmbH) 

[2] Friesner R A and Guallar V 2005 Annu. Rev. Physicist. Chem. 56 389. 
[3] Kravitz J Y, Pecoraro V L, Carlson H A 2005 J. Chem. Theory Comput., 1 1265 
[4] Raugei S and Carloni P 2006 J. Phys. Chem. B 110 3747 
[5] Geethalakshmi K R, Waller M P, Thiel W, Bühl M 2009 J. of Phys. Chem. B 113 4456 
[6] Zampella G., Fantucci P, Pecoraro V L, and De Gioia L 2006 Inorganic Chemistry 45 7133 
[7] Macedo-Ribeiro S, Hemrika W, Renirie R,Wever R, Messerschmidt A 1999 J. Biol. Inorg. Chem. 

4 209 
[8] Tracey A S, Willsky G R, Takeuchi G R 2007 Vanadium: Chemistry, Biochemistry, 

Pharmacology and Practical Applications (New York: CRC Press) p 162 
[9] Lonsdale R, Harvey J N, Mulholland A J 2012 Chem. Soc. Rev. 41 3025 
[10] Jorgensen W L, Maxwell D S, Tirado-Rives J 1996 J. Am. Chem. Soc. 118 11225 
[11] QSite, version 6.7, Schrodinger, LLC, New York, NY, 2015 
[12] Behera, R N and Panda A 2012 Computational and Theoretical Chemistry 999 215 
[13] Cramer C 2002 Essentials of Computational Chemistry (New York: Wiley) 
[14] Gomatam R 2009 Quantum Theory, the Chinese Room Argument and the Symbol Grounding 

Problem, Lecture Notes in Computer Science, ed P. Bruza, et al., vol 5494, (Berlin: Springer) 
p 174; Gomatam R 1999 Quantum Theory and Observation Problem, Journal of 
Consciousness Studies 6 173; Gomatam R 2014 Toward Placing the Concept of ‘Chemical 
Element’ on a New Quantum Footing, Annual Meeting of the International Society for the 
Philosophy of Chemistry, July 7-9, 2014, London 

 

5th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare 2016) IOP Publishing
Journal of Physics: Conference Series 738 (2016) 012013 doi:10.1088/1742-6596/738/1/012013

7


