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Abstract. We propose a drift-diffusion model for systems which obey fractional exclusion
statistics (FES), in a framework where the species include classical degrees of freedom such as
positions. The transition rates are calculated and the relation between the step and acceptance
probabilities on one hand and the diffusion and drift processes on the other hand are established.
A Monte Carlo scheme is implemented on a prototypical double-junction system of particles with
screened Coulomb interactions. In our approach the properties of interacting quantum gases
are locally included using the FES methodology. The model is suitable to describe transient as
well as stationary regimes.

1. Introduction

During the past decades the drift-diffusion models have been invaluable tools for describing the
transport in semiconductor devices and the physics of cold plasmas and gas discharges. Efficient
solvers based on Boltzmann transport equation implementing Monte Carlo schemes have been
devised. However, in recent years, the quantum effects in modern semiconductor devices became
increasingly important.

Solving microscopic quantum models—although they are most accurate-is becoming an
increasingly difficult task as the size of the analyzed system is getting larger in the attempt
to reach the experimentally attainable length scales. Therefore hybrid microscopic-macroscopic
models are usually employed, which combine a microscopic description for short length scales
with macroscopic fluid-type models, e.g. quantum drift diffusion model (QDD) [1], quantum
corrected drift diffusion model (QCDD) [2], Schrodinger-Poisson-Drift-Diffusion model (SPDD)
[3].

We propose here a method to locally incorporate in a transport model the behavior of
interacting quantum gases, using fractional exclusion statistics (FES) [4-6]. The method was
shown to be a tool for the study of the thermodynamic properties of interacting particle
systems, regarded as ideal FES gases. The transition rates for homogeneous FES gases were
established [7-9], which opened the possibility of analyzing the non-equilibrium dynamics of
interacting bosonic and fermionic systems via Monte Carlo simulations [9]. The extension of
this kinetic model to non-homogeneous FES systems with mutual exclusion parameters was
realized in Refs. [10-12]. We make here a step further and introduce a transport model based
on FES, using Monte Carlo simulations.
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2. Model and formalism

The system under investigation is a generic device made up by an active region and contacts.
The transport properties are dominated by hopping between states localized at the sites r;. The
contacts have the role of particle reservoirs which fix the chemical potentials according to the
applied bias. The key elements of the active region, which determine properties of the system,
are the local density of states o(r,€) and the interacting potentials which, in general, may be
position dependent. The Hamiltonian of the system is [11,12]

1
E:Zerlnrl+§ZV(|r[frJ\)nr1nrJ. (1)
J; 1,0

where €, is the energy and ny, is the occupation number of the site I; the total particle number
is N = Y ;ny,. The quasiparticle energies are defined as &, = €, + Zgrj <&, V(Iri —xj)ne;,
such that =37 &, ny,.

In order to apply the FES formalism we work in the quasicontinuous limit and we define
the species as in Refs. [11,12] by dividing the real space and the quasiparticle energy axis
into elementary volumes and segments dr and de. If the space is s-dimensional (sD), then the
species will be the (s + 1)D volumes 0r¢ x d¢;, where by ¢ (Greek) and ¢ (Latin) we index
the volumes and energy intervals, respectively. Each species (§,4) contains Ng; particles and G;
(for bosons) or T¢; (for fermions) single-particle states. Then the number of micro-configurations
corresponding to a distribution {G¢;, Ng; } (bosons) or {Tg;, N¢;} (fermions) of states and particles

is WB/F = L. Wg/F, where

(Gei + Nei — 1) Te;! 2)
Neil (G — 1)1 Neil(Gei — Tea)!

The FES parameters are defined by the change of the number of states in one species (£i)
due to the change of the number of particles in any (other or the same) species (n7), which
is 0G¢; = —agi 0Ny for bosons and 61¢; = —ag;,;0N,; for fermions. For the Hamiltonian
(1) and our choice of quasiparticle energies the FES parameters are ogjy,; = [0;0¢(€;) + 0(i —
7)0€i(doe(€;)/de;)]V (Jre — rp|), where o¢(e;) = oreo(re,€;) [11,12]. Note that if the o¢(e;) does
not depend on the energy, the FES parameters simplify to og;.,; = d;j0¢(e;)V (Jre — 1y)).

In FES the description of bosons and fermions may be unified by the redefinition of the
FES parameters and of the number of states obtaining what we may call bosonic or fermionic
descriptions. In the bosonic description—the one that we shall use in the following—the number
of states is G¢; for bosons and T¢; — Ng; + 1 for fermions. Similarly, the FES parameters are
agiy; for bosons and oy, + d¢yd;; for fermions. If we make these transformations then the
number of microconfigurations is given by Wg for both, bosons and fermions.

If we assume that the system is in thermal equilibrium, then the probability to find the
system in the state Y, defined by the set {Ng;, Gg;}ei, is

Wil = and W =

€ (& 1 ET
Py = p*({Nei, Geitei) = = [I Wei exp <_M> ’ ?
(€,9)

where Z is the partition function and Ey = > ¢ ; N¢ieg; is the total energy—we assume that all
the particles that belong to one species (£i) have the same energy eg;. Two states of the FES
system, T and ®, are considered neighbors if they differ by one particle jump from one species
(&,4) to another (n,j),

T = {Ngi,Geis Noj, Gnj s {Nek, Gert} (4)
O = Ng—1,G; Ny +1,Gp i {New G} (5)
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(where (k) # (£,4),(n,7)). Upon extracting one particle from species (,7) and inserting
it into species (7,7), the number of available states may change in any species (Ck) by
ng = Gk + Qck,ei — Q¢kpj- Introducing a discrete-time reversible Markov chain one can employ
the detailed balance equation,

pYTor = pg'Tre, (6)
where I'gy, I've are the transition rates from Y to ® and vice-versa, respectively. From the
detailed balance equation we obtain the ratio between the transition rates

Iye) cq cqy _ O(logpy')  d(logpy)
log (Fm) = log(py') — log(pg') ~ INe T oN, (7)

where, in last step, we used a first order expansion for log(p%q) around Y. In the thermodynamic
limit, i.e. for large Ng and Gg, we apply the Stirling formula to calculate log(py) =~
Y(eq) [(Gei + Nei) log(Gei + Nei) — Geilog Ge — Neilog Ng;| and by using the identity ag;p; =
—GG,U/@N@- we find

d(log py
(8]%7];-}() (1 — agigi) log(Gei + Ng;) — log Nei + g g5 log G
i log(Gei + Nei) + agigjlog Gy
+ > [Foeicnlog(Ger + New) + agicr log Gerl, (8)
(Ck)

where (¢,k) # (&,1),(n,j) and a similar expression for d(logpy')/ON,; by interchanging
(&,4) and (n,j). Defining the number of available states in the absence of particles [5] by
GOZ- =Ga+2,; agini(Npj — ¢ipnj) and the occupation numbers as ng = Ngi/Ggi, from Eq.
(73 we find the transition rate for the T — & process

Lo ~ ngi(1+np; — Apj) [][1+ngk — Age]™0r T [1 = Ag] ek, )
(C.k) (¢:k)

where Ag; = 3°, ; agiqjnngj. One should note that in the case of a homogeneous system with
diagonal statistical parameters, ag;,; = ad¢,d;j, one recovers the transition rates reported in
Ref. [9]:

Par(a) ~ ngi(1 — ang)*[L+ (1 — a)ny,] =2 (10)

The transition rate in equation (9) represents the step probability for one particle in species
(&,1) to select (n,7) as target species. Once the destination species is obtained, the move is
accepted with a probability proportional with the Boltzmann factor, i.e. ~ min[l, exp(—(Eg —
Ex)/kpT)]. The step probability depends on the occupancies of both source and target species
and can be associated with a diffusion process. The acceptance probability depends on the
energy diference between the two species and, in the case of external fields, is influenced and
may be associated with the drift process.

3. Application — Transport in a double junction system with screened Coulomb
interactions

We apply the drift-diffusion model on a one-dimensional test-case system. We consider a two
terminal device partitioned into three regions: the left contact, the active region and the right
contact. The particles are interacting via a screened Coulomb interaction, which is parametrized

by:
exp (—T/RO _ 1) , (11)

V(T, A) = ‘/0 7A/RO

1
T’/Ro
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Figure 1. (Color online) (a) and (b) Particle densities across the two terminal device, for
Ar = A¢ and Agp — o0, respectively. The dashed lines mark the device system with N, sites
and the dotted lines show the interface between the contacts and the active region. Both initial
(squares) and final (circles) particle densities, p(°) and p, are represented. (c) and (d) Populations
vs. energy for the left (nz) and the right (ng) contact and three other sites, £ = 5,10, 11, for
the two screening lengths considered. The vertical dashed lines mark the chemical potentials.

where 7 is the distance between the particles, Ry is a cut-off radius which removes the singularity
at the origin, Vo = V(Rp, \), and X is the screening length. We assume the interaction inside
the contacts is strongly screened, while in the active region we consider both limiting situations
which correspond to short and large screening lengths.

Our prototypical system consists of N, x N, species, with N, = 16 and N, = 50, and constant
density of states. The species are equally spaced in the interval [—L,/2, L, /2], where L, = 1.
The length of each of the two contact regions is L, /4 and it is assumed they have a short
screening length Ao = L,/N,, while for the active region, of length L,/2, we compare two
screening lengths, namely, Aap = A¢ and Aar — oco. In the following, all energies are scaled
with respect to Er, the Fermi energy of the non-interacting system. The chemical potentials
in the left and the right contacts are set to u;, = 2.5 and pur = 2, respectively, their difference
reflecting the applied bias. The cutoff radius is set to Ry = 0.05 and V{y = 8. The temperature
of the system is kpT = 0.25.

The species £ = 0 and &€ = N, — 1 have fixed populations, as imposed by the chemical
potentials in the contacts. Whenever a particle enters / leaves these species, the particle is
removed / added back, respectively.

We first performed a number of 10'° Monte Carlo steps in order to equilibrate the system, and
then using an equal number of steps the thermal averages are performed. The particle densities,
pe = Y_;ngi, are presented in Fig. 1 (a) and (b) for the two cases — short and long screening
lengths in the active region. For the homogeneous system, Aar = A¢, one obtains a linear
dependence of the particle density, as particles are moving from the left to the right contact. By
contrast, for pure Coulombian interaction one observes a decrease in the particle density in the
active region. The depletion region is skewed by the finite potential difference between the two
contacts and a spike-like feature appears in the particle density in the vecinity of the right contact
interface, in the species £ = 11. However, the regions of the non-interacting contacts embedded
in the active region still retain a linear dependence in the particle distribution. Correspondingly,
Figs. 1 (c¢) and (d) show the populations in the two contacts, as well as for the species at three
other sites. For £ = 10 one obtains a minimum in the particle density for Agp — oo and the
populations of the quasiparticle energy levels are comparatively smaller. This charge depletion
effect is due to the unscreened Coulombian repulsion and it may be found, e.g., in a n4++ /
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intrinsic / n++ semiconductor structure.

Within the proposed method one may extract the current of particles flowing between
terminals, from the number of particles inserted or extracted from the boundary species, £ = 0
and N, — 1, respectively. Although in stationary regime the two currents are equal up to some
finite system fluctuations, generally, in non-stationary regime, they may differ and one can
describe in real time transient processes, e.g. charge accumulation or depletion.

4. Conclusions

We proposed a drift-diffusion model for systems which obey fractional exclusion statistics. We
determined the transition rates, pointing out the relation between the step and acceptance
probabilities and the diffusion and drift processes.

The model is employed on a prototypical double-junction system of particles with screened
Coulomb interactions.  These types of systems are relevant for device applications in
semiconductor physics, e.g. field effect transistors. Depletion effects are analyzed with respect
to the screening length in the device active region.

Our approach takes advantage of a local description of the system in terms of ideal FES
gases. This enables us to handle larger systems, in the range where exact quantum mechanical
calculations are difficult to be performed and yet incorporating locally the quantum behavior of
the interacting particle systems by means of the FES methodology.

Acknowledgements

This work was supported by the National Authority for Scientific Research and Innovation
(ANCSI) under grants PN-II-ID-PCE-2011-3-0960, PN 16420101 and PN 16420202.

References
[1] Degond P, Gallego S S and Mehats F 2007 J. Comp. Phys. 221 226.
[2] de Falco C, Jerome J W and Sacco R 2009 J. Comp. Phys. 228 1770.
[3] Lacaita A L, Pirovano A and Spinelli A S 2002 IEEE Trans. Electron Devices 1 25.
[4] Haldane F D M 1991 Phys. Rev. Lett. 67 937.
[5] Wu'Y S 1994 Phys. Rev. Lett. 73 922.
[6] Isakov S B 1994 Phys. Rev. Lett. 73(16) 2150.
[7] Kaniadakis G, Lavagno A and Quarati P 1996 Mod. Phys. Lett. B 10 497.
[8] Kaniadakis G, Lavagno A and Quarati P 1996 Nucl. Phys. B 466 527.
[9] Nemnes G A and Anghel D V 2010 J. Stat. Mech. page P09011.
[10] Nemnes G A and Anghel D V 2013 J. Phys.: Conf. Ser. 410 012120.
[11] Anghel D V, Nemnes G A and Gulminelli F 2013 Phys. Rev. E 88 042150.
[12] Nemnes G A and Anghel D V 2014 Rom. Rep. Phys. 66 336.



