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Abstract. The exact solution of the coupled mode equations is presented in the case of the con-

tinuous electromagnetic wave propagation in the quasi-one-dimensional rhombic array of the 

waveguides. In general case of the boundary conditions the discrete diffraction is described by 

these solutions. The flat band mode propagation is found as the special case.   

1.  Introduction  

Recently the optical simulations of the different phenomena of solid state have been developed. There 

is one interested example. The investigation of two dimensional electron systems demonstrated that 

presence of the third atom in the elementary cell as well as long range interaction in the lattice leads to 

emerging of a flat sheet (flat band) between conventional zones. Similar optical lattices can be realized 

by means of waveguides as nodes of the lattice. Some kinds of the optical lattices that demonstrate the 

photonic spectrum with flat band have been discussed in [1,2,3]. In [1] the waveguide array consisting 

from three parallel linear chain of waveguides was considered. The central waveguide chain is shifted 

according to either chains at half lattice period. Resulting configuration seams as linear chain of the 

rhombus. This array of waveguides was named as the quasi-one-dimensional rhombic array [1,4,5].  

 In this paper, we consider the electromagnetic field distribution in the quasi-one-dimensional 

rhombic array of the waveguides. All waveguides are supposed as linear waveguides. The exact solu-

tion of the coupled mode equations is found. These solutions demonstrate both the flat band mode and 

the discrete diffraction phenomenon.  

2. Base equations   

System of equations describing coupled waves in this quasi-one-dimensional rhombic array of wave-

guides has the following form [1,4,8]  
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Here Kz  is normalized coordinate, K  is coupling constant. The fields nA , nB  and nC  are di-

mensionless slowly varying amplitudes of the electric fields in n-th waveguide. The sub-indices n are 

markers of the elementary сells. Phase matching condition is assumed to be satisfied, and coupling 

constants between waveguides are equal to unit. Since system of equation (1) is linear, the dispersion 

relation can be found in a standard way:   
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Here q(s) is transversal wave number of the mode with index s, where MMs ,...,1,0,1,..., , 

12  MN  is number of the elementary сells of waveguide array. 

 

3. Solution of the base equations 

We can use the generation function method. Let us introduce the following functions 
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From (1) the following system of equations can be obtained  
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where  
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With taking into account the boundary conditions at 0   
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the solution of (3) can be written as 

 

 sin)(cos),( 000 CBAA PPiPyP ,                                      (4) 












 sincos)(

2

1
),( 00000 ACBCBB P

i
PPPPyP ,                         (5) 












 sincos)(

2

1
),( 00000 ACBBCC P

i
PPPPyP ,                         (6) 

 

where  

 

)2/(cos8 22 y ,  )2/exp(
2

1*

iy



 . 

V International Conference of Photonics and Information Optics IOP Publishing
Journal of Physics: Conference Series 737 (2016) 012008 doi:10.1088/1742-6596/737/1/012008

2



 

 

 

 

 

 

 

By using the orthogonality condition 
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the amplitudes )(nA , )(nB  and )(nC  can be determined from 4)-(6): 
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4. Particular solution of the base equations 

 

Let us consider some particular solutions of the base equations (1). The particular solutions are defined 

by the different boundary conditions. Supposing the conditions, which are correlated to situation 

where the radiation is initially input only to waveguides of one elementary cell in array. 
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Thus, 00 APA  , 00 BPB  , 00 CPC  . With taking into account (4)-(6) the express the amplitudes 

)(nA , )(nB  and )(nC  can be written as 
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where the constants 000 CBS   and 000 CBR   are introduced, and  22 . The details of 

the calculations are presented in [8]. Theses expressions describe the electromagnetic radiation spread-

ing along array.  

 In the case of boundary conditions  
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we have 00 R , but 00 2BS  . The distribution of the electromagnetic fields in waveguide array is 
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In this case the discrete diffraction is absent. It corresponds for the excitation of the flat-band modes 

[4,5]. However, if the radiation will input into one of the waveguide of the central part of array, i.e., to 

use the boundary condition  
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then the distribution of the amplitudes )(nA , )(nB  and )(nC  takes the following form 
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The discrete diffraction takes place in this case of the boundary conditions. 
 

5. Conclusion  

The propagation of the electromagnetic continues wave in the quasi-one-dimensional rhombic array of 

the waveguides is investigated. The exact solution of the coupled mode equations (1) is found. In gen-

eral case of the boundary conditions the discrete diffraction is described by these solutions. However, 

the without diffraction regime of the wave propagation at the particular boundary condition exists.   

The obtained exact solution could be correct in the case of slowly varying envelopes of the elec-

tromagnetic solitary waves, if the group velocities for each waveguide in array are equal.  

If the rhombic waveguide array is composed of the unit cells containing three waveguides: two 

positive refraction index waveguides and one negative refraction index-waveguide, then the electro-

magnetic wave spectrum contains two gap modes and one gapless mode. However, the gapless mode 

approximately corresponds to flat one, thus we can say about quasi-flat band. 
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