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Abstract. Interaction of few-cycle pulses counter-propagating in an optical fiber is studied 

numerically via solution of equations for bi-directional fields that are equivalent to the full 

scalar wave equation. It is simulated how 3-cycle optical pulse of the Ti:Sa laser is gained as it 

propagates through the field of the pulse on the second harmonic with higher intensity in the 

telecommunication type single-mode optical fiber. Rise of sixths harmonic is also observable 

under considered conditions. 

1. Introduction 

Qualitative and quantitative description of a few-cycle pulse evolution is one of the most relevant 

challenges for the modern nonlinear optics. Extremely short durations of such pulses allow for 

concentration of high peak intensities with a lower amount of the input power, which in turn leads to 

gain in efficiency of nonlinear light-matter interactions boosting all sorts of nonlinear phenomena. In 

the linear regime low-intensity pulses propagate independently from each other, so that the resulting 

field is simply the superposition of those pulses. High-intensity pulses affect each other via nonlinear 

response of the propagation medium so that the resulting field differs from the simple superposition of 

electromagnetic waves at the given point in space and time. Some investigations on characteristics of 

these differences are presented in [1, 2]. However the articles imply quite a few analytical 

simplifications and do not contain straightforward numerical solution for the equations describing 

evolution of the counter-propagating pulses. 

2. Set of equations 

A set of equations for forward and backward waves can be utilized for description of evolution of few-

cycle pulses counter-propagating in the optical fiber [3]: 
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where z is the coordinate along the axis of the fiber, ][   EFG  is the spectral density of the 

fields of the forward and backward waves E , F is Fourier transform, t is time, ω is 

frequency, i is the imaginary unit, k(ω) = ωn(ω) / c is the wavenumber, n(ω) is the refractive 
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index, c is the speed of light, Nω is the nonlinear operator in the frequency domain and PNL is 

the nonlinear response of the medium. 

3. Medium parameters 

Frequency dependency of refractive index of the silica glass within the range of transparency can be 

expressed as power series of frequency [4]: 
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. 

Nonlinear response can be described with phenomenological model suggested by Platonenko 

and Khokhlov [5]: 
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where 
e

3  and 
ev

3  are the cubic nonlinear susceptibility of electronic and electronic-

vibrational nature, respectively, R is the amplitude of the molecular oscillations, Tv is the 

relaxation time, ωv is the Stokes frequency and γ is the damping coefficient. 

4. Results of simulations 
Equations (1) allow us to represent two counter-propagating pulses as forward and backward 

waves, respectively. Therefore it seems convenient to investigate how a high-intense pulse 

influences the field of counter-propagating pulse with lower intensity by numerical solution of 

equations (1). Within such approach initial field distribution of the high-intensity pulse was 

represented as the field of the backward wave with Gaussian profile and central frequency of 

390 nm (the second harmonic of Ti:Sa laser) and duration 7.8 fs (6 field cycles), and pulse 

with the lower intensity was represented as the field of the forward wave of Gaussian form 

with central frequency 780 nm (the first harmonic of Ti:Sa laser) and duration of 7.8 fs (3 

field cycles). If initial time delay between the pulses is 50 fs, then the distance in optical 

waveguide, which is enough for the pulses to propagate through each other with interaction 

and even accumulate some time delay is about 10 μm. 

Since the forward and backward waves are interrelated via the nonlinear term in equations (1), 

a non-zero forward wave gives rise to non-zero backward and vice versa. Such behavior is 

independent of initial conditions, hence to exclude peculiarities of the directional fields 

separation it is worth considering the total field E = E+ + E– and compare it between linear 

and nonlinear regimes. In order to do this comparison we run three numerical experiments. 

For the first it was assumed that the forward wave is absent, but the intensity of the backward 

wave is I = 2·10
13

 W/cm
2
. For the second the initial field of the backward wave was set to 

zero, while the initial amplitude of the forward wave was 5 times lower than that of the 

backward wave in the first experiment. And finally we considered the initial distributions with 

both waves presented and amplitudes of backward and forward waves taken from the first and 

second experiments, respectively. The sum of resulting fields from the first and second 

experiments E1 + E2 corresponds to independent propagation of pulses, while the total field E3 

of the third experiment is the result of their interaction. The spectral density of the difference 

of these fields G
diff

 = G3 – (G1 + G2) depicted in figure 1 illustrates the effect of nonlinear 

interaction between counter-propagating pulses. 
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Figure 1. The spectral density of the difference of the resulting fields in non-linear and linear 

regimes. 

It is seen that the interaction leads to the gain of waves on basic frequencies, and the wave on 

the first harmonic of Ti:Sa laser corresponding to the pulse with the lower intensity is affected 

more than the one on the second harmonic corresponding to the pulse with the higher 

intensity. Higher impact of the more intense pulse on the weaker seems justified. Besides one 

can observe the gain of the sixths harmonic, which corresponds to the triple frequency of the 

intense backward wave on the second harmonic. The amplitude of the spectral density G
diff

 is 

in the order of 0.015 of the initial amplitude of the intense pulse. 

5. References 

[1] Buyanovskaya E M and Kozlov S A 2007 JETP Lett 86 349 

[2] Buyanovskaya E M and Kozlov S A 2010 Sci. and Tech. Journ. of Inf. Tech., Mech. And Opt. 

66 23 

[3]  Kinsler P, Radnor S B P and New G H C 2005 Phys. Rev. A 72 063807 

[4]  Bespalov V G, Kozlov S A, Shpolyanskiy Yu A and Walmsley I A 2002 Phys. Rev. A 66 

013811 

[5]  Platonenko V T, Stamenov K V and Khokhlov R V 1966 Sov. Phys. JEPT 22 827  

 

International Conference of Young Scientists and Specialists "Optics-2015" IOP Publishing
Journal of Physics: Conference Series 735 (2016) 012024 doi:10.1088/1742-6596/735/1/012024

3


