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Abstract. This paper presents the meshless local integral equation method (LIEM) for
nonlocal analyses of two-dimensional dynamic problems based on the Eringen’s model. A unit
test function is used in the local weak-form of the governing equation and by applying the
divergence theorem to the weak-form, local boundary-domain integral equations are derived.
Radial Basis Function (RBF) approximations are utilized for implementation of displacements.
The Newmark method is employed to carry out the time marching approximation. Two
numerical examples are presented to demonstrate the application of time domain technique
to deal with nonlocal elastodynamic mechanical problems.

1. Introduction
It is found that the distance between individual atoms or molecules cannot be ignored when it
becomes obviously comparable to external scales and the discrete microstructure in materials
can no longer be treated as homogeneous continuum at small size. Therefore, nonlocal elasticity
theories have been initiated to model material properties exhibited at micro-, and even at nano-
scale levels. Among others, Eringen [1] proposed an integral model for linear homogeneous
isotropic media as

σ(x) = ξ1σ̄(x) + ξ2

∫
V

α(x,x′, l)σ̄(x′)dV (x′) (1)

where σ is refered to as nonlocal stress, σ̄ is the classical stress, V represents the volume of
domain, x,x′ are collocation and domain integration points, l is the characteristic length. ξ1

and ξ2 are portion factors and ξ1 + ξ2 = 1. α is the nonlocal kernel and usually taken as
α (x,x′, l) = λ0exp (−|x− x′|/l), λ0 = 1/2πl2.

2. LIEM for nonlocal elastodynamics
Consider a linear elastic body in two dimensional domain Ω with boundary Γ. The weak form
of governing equations of motion can be written as∫

Ωs

(σij,j + fi − ρüi)u∗i dΩ = 0 (2)

where f denotes the body force, ρ is the mass density, ü is the acceleration and u∗i is the test
function. By use of the divergence theorem, Eq.2 can be rewritten as∫

Γs

σijnju
∗
i dΓ−

∫
Ωs

(σiju
∗
i,j − fiu∗i + ρüiu

∗
i )dΩ = 0 (3)
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where nj is the unit outward normal on the boundary. A unit test function φi(x) = 1 is
employed and thus, local integral equations in Eq.3 becomes∫

Γs

σijnjdΓ +

∫
Ωs

(fi − ρüi)dΩ = 0 (4)

Assume the local domain is enclosed by several straight lines and recall the constitutive
relation of Eringin’s model in Eq.1, Eq.4 can be written as∫

Γs

σij(x)nj(x)dΓ(x) = ξ1

L∑
l=1

nlj

∫
Γl

σij(x)dΓ(x) + ξ2

L∑
l=1

nlj∆l

∫
V

α(xi,x
′, l)σij(x

′)dV (x′) (5)

where L is number of straight lines and ∆l is the length of the lth straight line.
The time marching approximation of Newmark mthod [2] are given as:

u̇n+1 =
γ

β∆t
(un+1 − un) +

β − γ
β

u̇n −
γ − 2β

2β
∆tün (6)

ün+1 =
1

β∆t2
(un+1 − un)− 1

β∆t
u̇n −

1− 2β

2β
ün (7)

in which u̇ , ü and u represent the velocity, acceleration and displacement, respectively. un is
the displacement at n∆t, where ∆t is the selected time step. Parameters γ and β are selected
as γ = 0.5 and β = 0.25 in this paper.

Consider the RBF approximation in [3], and the four-point standard integral scheme is
adopted to carry out the domain integrals, the following discrete equations can be derived.

ξ1C
K∑

k=1

u
(k)
1(n+1)

L∑
l=1

[
K∑
i=1

(
E′F1iln

l
1 + µF2iln

l
2

)
αik +

T∑
t=1

(
E′G1tln

l
1 + µG2tln

l
2

)
βtk

]
+ u

(k)
1(n+1)+

ξ2C
K′∑

k′=1

u
(k′)
1(n+1)

V∑
q=1

4∑
p=1

L∑
l=1

(
E′φk′,1(x′p)nl1(xl) + µφk′,2(x′p)nl2(xl)

)
α(xl,x

′
p, l)∆lwp∆Vq+

ξ1C

K∑
k=1

u
(k)
2(n+1)

L∑
l=1

[
K∑
i=1

(
νE′F2iln

l
1 + µF1iln

l
2

)
αik +

T∑
t=1

(
νE′G2tln

l
1 + µG1tln

l
2

)
βtk

]
+

ξ2C
K′∑

k′=1

u
(k′)
2(n+1)

V∑
q=1

4∑
p=1

L∑
l=1

(
νE′φk′,2(x′p)nl1(xl) + µφk′,1(x′p)nl2(xl)

)
α(xl,x

′
p, l)∆lwp∆Vq = I1

(8a)

ξ1C
K∑

k=1

u
(k)
1(n+1)

L∑
l=1

[
K∑
i=1

(
νE′F1iln

l
2 + µF2iln

l
1

)
αik +

T∑
t=1

(
νE′G1tln

l
2 + µG2tln

l
1

)
βtk

]
+

ξ2C
K′∑

k′=1

u
(k′)
1(n+1)

V∑
q=1

4∑
p=1

L∑
l=1

(
νE′φk′,1(x′p)nl2(xl) + µφk′,2(x′p)nl1(xl)

)
α(xl,x

′
p, l)∆lwp∆Vq+

ξ1C
K∑

k=1

u
(k)
2(n+1)

L∑
l=1

[
K∑
i=1

(
E′F2iln

l
2 + µF1iln

l
1

)
αik +

T∑
t=1

(
E′G2tln

l
2 + µG1tln

l
1

)
βtk

]
+ u

(k)
2(n+1)+

ξ2C
K′∑

k′=1

u
(k′)
2(n+1)

V∑
q=1

4∑
p=1

L∑
l=1

(
E′φk′,2(x′p)nl2(xl) + µφk′,1(x′p)nl1(xl)

)
α(xl,x

′
p, l)∆lwp∆Vq = I2

(8b)

in which C = −β∆t2

ρΩs
, Ii = ui+∆tu̇i+

1− 2β

2
∆t2üi (body force is ignored). E′ = E/(1−ν2), E is

Young’s modulus and ν is the Poisson’s ratio and shear modulus µ = E/2(1+ν). k = 1, 2, . . . ,K
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and k′ = 1, 2, . . . ,K ′ are the number of nodes in the support domain centred at x and x′,
respectively. V is the number of sub integral domains and wp = 0.25. Analytical solutions for
boundary integrals of Fjil and Gjtl in closed form can be found in [4].

Traction boundary conditions are
∫

Γ−ΓT
tidΓ−

∫
ΓT
t0i dΓ = Ii for xk, k = 1, 2, . . . ,MT , where

ΓT is the traction boundary. While displacement boundary conditions can be introduced directly
as ui(xk) = u0

i , k = 1, 2, . . . ,MD. MT and MD are the number of nodes located on the traction
and displacement boundaries, respectively.

3. Numerical Examples
3.1. A square plane subjected to dynamic load
Consider a square plate of side a = 1.0 subjected to a Heaviside load σ0H(t) on top and
fixed along the edge at x2 = 0 as shown in Fig.1. 11× 11 nodes are distributed in the problem
domain. Young’s modulus is one unit and Poisson’s ration is taken as zero. Normalized dynamic
displacements on point A and B with the characteristic length l = 0.1 and l = 0.2 for different
portion factors (ξ1 = 0.8 / ξ1 = 0.5) are plotted in Fig.2 to Fig.4, which show that the period
of oscillation increases when the portion factor ξ1 decreases or the characteristic length l rises.

Figure 1. A square plate subjected to a
Heaviside load.
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Figure 2. Normailized displacement for
point A and B against normalized time
c1t/b when ξ1 = 0.5, l = 0.1.
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Figure 3. Normailized displacement for
point A and B against normalized time
c1t/b when ξ1 = 0.5, l = 0.2.
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Figure 4. Normailized displacement for
point A and B against normalized time
c1t/b when ξ1 = 0.8, l = 0.2.

3.2. A ring under internal dynamic pressure
A ring under internal dynamic pressure is analysed as shown in Fig.5(a). Dimensions a = 1cm,
b = 2cm. Young’s modulus E = 1.0 and Poisson’s ratio ν = 0.3. Due to symmetry, only one
quarter of the ring is considered. However, the contributions of strains from the whole ring
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must be taken into account in the domain integral. Nodes distributions can be seen in Fig.5(b).
The normalized dynamic tangential stress at point A and B are plotted in Fig.6 and Fig.7 with
l = 0.2 for different portion factors (ξ1 = 1.0 and ξ1 = 0.5). ABAQUS solutions are presented
as well for comparisons when ξ1 = 1.0 and good agreement have been obtained, which validates
the accuracy of time domain technique to general dynamic problems.

Figure 5. A ring under internal dynamic pressure :(a) geometry; (b) node distributions.
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Figure 6. Normalized tangential stress
against normalized time c1t/b for point A
when l = 0.2 for ξ1 = 1.0 and ξ1 = 0.5.
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Figure 7. Normalized tangential stress
against normalized time c1t/b for point B
when l = 0.2 for ξ1 = 1.0 and ξ1 = 0.5.

4. Conclusions
In this paper, LIEM formulations are presented for two-dimensional nonlocal elastodynamics.
The Newmark method is selected as the approximation scheme to deal with time-dependent
cases. Two numerical examples demonstrated that LIEM embedded with time domain technique
is stable, convergent and accurate for solving nonlocal elastodynamic problems.
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