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Abstract. The solid-shells are an attractive kind of element for the simulation of forming
processes, due to the fact that any kind of generic 3D constitutive law can be employed without
any additional hypothesis.

The present work consists in the improvement of a triangular prism solid-shell originally
developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell,
undergoing large deformations. The element is formulated in total Lagrangian formulation, and
employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement

field. In the original formulation a modified right Cauchy—Green deformation tensor (C) is

obtained; in the present work a modified deformation gradient (F) is obtained, which allows
to generalise the methodology and allows to employ the Pull-Back and Push-Forwards
operations.

The element is based in three modifications: (a) a classical assumed strain approach for
transverse shear strains (b) an assumed strain approach for the in-plane components using
information from neighbour elements and (c) an averaging of the volumetric strain over the
element. The objective is to use this type of elements for the simulation of shells avoiding
transverse shear locking, improving the membrane behaviour of the in-plane triangle and to
handle quasi-incompressible materials or materials with isochoric plastic flow.

1. Introduction
Solid-shells have been during the last two decades[4, 5, 6, 7, 8] an important improvement in
the shells simulations, providing a reliable simulations and avoiding the problematic that are
associated to the kinematics hypothesis and plane stress constitutive laws related to the use of
the shell element. The main advantages when using solid-shell elements are: a) general 3D
constitutive relations; b) large transverse shear can be considered, and considering additional
elements along the thickness improve this behaviour; c) there is not need to consider transitions
between solid and shell elements (all the elements are solids) ;d) contact forces can be introduced
directly in the geometry and in a realistic way without any additional technique, which is
specially important for the consideration of friction; e) the element is rotation-free, avoiding the
storage and computation of this variables;f) in the case where we have non-parallel boundaries
this can be modelled correctly.

Most of the existing solid-shells are linear hexahedron[4, 5, 6, 7, 8], which have two main
disadvantages; the first one is the hourglass effect; the second problematic is the meshing of
the plane, due to the fact that meshing quadrilateral is less performant than triangles. For this
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reasons the triangular prisms (wedges) could be considered an interesting alternative, specially
for the second problem mentioned, but this kind of geometry is not exempt of problematic, owing
to the low order of interpolation of the geometry; this can be solved with the consideration of
the neighbours elements, in consequence the element becomes quadratic in the plane solving this
last problem.

The element has been implemented into Kratos[16], the in-home FEM-Multiphycis open-
source code, implemented in C++ with parallilization capabilities. The pre/post-process of all
the presented examples haven been processed with GiD, the CIMNE software for pre and post
porcessing. The content of this proceeding will be the following one: 1) A resume of the theory
concerning to the element is presented, focusing in what has been improved from the original
element[2, 3] , 2) Some test cases are presented to show the good performance of the element.
Additionally, more examples of application of the new solid-shell elements will be shown in the
oral presentation in the congress.

2. Theory
For the aim of brevity we will focus in the improvements introduced in the original formulation
from Flores|2, 3], and we will address to the original material for additional information.

2.1. Pull-Back and Push-Forward (Extension of the formulation)

The formulation presented until now is broadly the formulation already presented in the works
of Flores[1, 2, 3], the main step forward of this work is the extension of the formulation. As we
have seen the formulation presented allows us to obtain a modified left Cauchy tensor C. With
this tensor we are able to obtain strains in a traditional way, g.e with Green-Lagrange, but we
are unable to work with the Pull-Back and Push-Forward operations.

In order to perform these operations we need the deformation gradient F, or in our case F
owing to we are working with a modified right Cauchy tensor C. Obtain one from another is
not a trivial operation, and we must consider additional assumptions to obtain our modified
deformation gradient. In a standard formulation to obtain the deformation gradient F we
compute (1) from the material displacement gradient tensor Vxu, C can be obtained easily
from here.

F=Vxu+I—C=FF (1)

We will present now (2a) the polar decomposition of F, which will be the key idea considered
to obtain F. In this decomposition R represents the proper orthogonal tensor and U is the
right stretch tensor. The right stretch tensor can be computed from the square root of the right
Cauchy tensor. The only remaining component needed to compute the F will be the modified
proper orthogonal tensor where we will take the assumption of R = R. The computation of this
F is summarized in (2b).

F=RU and U=+C (2a)

C=FIF5U=VC—>R=F -U!
U=VC

With the modified F we are able to compute the Pull-Back and Push-Forward operations,
which allow us to to have an unified description between the Fulerian and Lagrangian tensors.
In (3) we can appreciate some examples, where a Push-Forward by F of the Lagrangian vector
dX to the current configuration gives the Fulerian vector dx, and vice-versa with the Pull-Back
operation. These concepts provide us a mathematically consistent method for define the time
derivatives of the tensors, called Lie-derivatives. Considering all this, the operations can be
considered for example to obtain a formulation of hyperelastic-plastic constitutive model
based on the multiplicative decomposition of the deformation gradient, for more information
consult[12].

F:RU{ (2b)
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dx =F -dX = ¢.dX and dX = F~' . dx = ¢*dx (3)

3. Test cases

The following test examples here presented shown the good performance and behaviour of the
element. The main references of this results are taken from the original paper from Fernando
Flores[2, 3], but many of the results are taken too from[15] a work with the most significatives
benchmarks for test the shell behaviour. All the test results can be found in Figure 1.

Cook’s membrane test: Figures la and 1b represent the behaviour of the Cook’s
membrane, respectively elastic and elasto-plastic, both obtained considering an implicit
scheme. The results present even less than the reference[3] locking for the elastic case and
similar behaviour for the elasto-plastic case.

Open ended cylindrical shell test: The results (Figure 1c) agrees with the solution
from [15].

Slit test: Can be seen (Figure 1d) that with the refinement of the mesh the solution tend
to the correct one [15].

Panel test: The panel test is a common test which presents a highly non-linear behaviour,
and it is necessary an arc-length to compute. The results obtained, Figures 1le and le, show
a clearly agreement with the reference [15].

Sphere test: The Figure 1g presents the results obtained for the semi-spherical shell with
a ratio R/t = 1000, which agrees with the results from [15].

Cone-shell test: This problem is commonly considered to study the combination both
plasticity and geometrical non-linearity, the results shown in Figure 1h differ from [14], but
with a close behaviour.
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(a) Elastic Cook’s membrane (b) Elasto-plastic Cook’s membrane
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(g) Sphere load-deflection R/t = 1000 (h) Load-deflection curve for the cone-shell test

Figure 1: Resume of the tests results
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