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Abstract. The present approach deals with the dynamical analysis of thin structures using
an isogeometric Reissner-Mindlin shell formulation. Here, a consistent and a lumped mass
matrix are employed for the implicit time integration method. The formulation allows for large
displacements and finite rotations. The Rodrigues formula, which incorporates the axial vector
is used for the rotational description. It necessitates an interpolation of the director vector in
the current configuration. Two concept for the interpolation of the director vector are presented.
They are denoted as continuous interpolation method and discrete interpolation method. The
shell formulation is based on the assumption of zero stress in thickness direction. In the present
formulation an interface to 3D nonlinear material laws is used. It leads to an iterative procedure
at each integration point. Here, a J2 plasticity material law is implemented. The suitability
of the developed shell formulation for natural frequency analysis is demonstrated in numerical
examples. Transient problems undergoing large deformations in combination with nonlinear
material behavior are analyzed. The effectiveness, robustness and superior accuracy of the
two interpolation methods of the shell director vector are investigated and are compared to
numerical reference solutions.

1. Introduction
In this contribution an isogeometric Reissner-Mindlin shell formulation for transient problems
including large deformations and nonlinear material behavior is presented. Isogeometric analysis
for structural dynamics was proposed in [1]. It leads to an excellent performance in the optical
branch, see [2]. In the frame of plate formulations a Kirchhoff formulation is presented in [3] and
a Reissner–Mindlin formulation is derived in [4]. In the context of shells, isogeometric Kirchhoff–
Love shell analysis is studied in [5]. The good performance was achieved at the cost of higher
computational effort. Benson et a. [6, 7] proposed isogeometric shell formulations for transient
problems using explicit time integration, which are also able to deal with large deformations
and nonlinear material behavior. The present approach employs an implicit time integration.
The purpose of the present approach is to analyze the impact of the director interpolation. The
continuous interpolation method of the shell director vector, proposed in [8], is compared to a
discrete interpolation method as used e.g. in [6, 9, 10].
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2. Governing equations for the Reissner-Mindlin shell
Let x be a point on the shell mid surface of the reference configuration and x̄ be a point of the
mid surface of the current configuration. The shell continuum is defined by

Φ(ξ1, ξ2, ξ3) = x(ξ1, ξ2) + ξ3d(ξ1, ξ2)

Φ̄(ξ1, ξ2, ξ3) = x̄(ξ1, ξ2) + ξ3d̄(ξ1, ξ2)
(1)

Here, the quantities with an overset bar denote the values in the current configuration. Φ
represents an arbitrary point in the shell and d describes the director vector, see Fig.1. ξ1, ξ2

are the in-plane coordinates and ξ3 denotes the thickness coordinate with −h/2 ≤ ξ3 ≤ h/2,
where h is the thickness of the shell. The membrane strains εαβ, the change of curvature καβ

Figure 1. The reference- and current configuration of the shell continuum

and the transversal shear strains γα read

εαβ =
1

2
(x̄,α · x̄,β − x,α · x,β)

καβ =
1

2

(
x̄,α · d̄,β − x,α · x,β

)
γα = x̄,α · d̄− x,α · d .

(2)

The Greek letters indicate the local coordinate direction, it holds α, β ∈ {1, 2}. The vector
containing all shell strains reads εT = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2].

3. The weak form
Let δv ∈ H1 be an admissible test function and v the displacement vector, the weak form of
the equation of motion reads

G(v, δv) =

∫
B0

δvTρ0v̈ dV +

∫
Ω0

δεT σ dA−
∫

Ω0

δvTp dA−
∫

Γσ

δvTf ds = 0 . (3)

Here, σ represents the stress resultants which are work conjugate to the shell strains. ρ0 is the
initial mass density and v̈ the acceleration. The surface load p is defined per area reference
surface and the traction f is given on the boundary.
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4. Interpolation methods of the director vector
4.1. Discrete interpolation method - Rotation before interpolation
Within the discrete interpolation method (DIM), see e.g. [11], the nodal basis systems in the
current configuration

āiI = RaiI (4)

are calculated by the rotation of each nodal basis system in the reference configuration at
each control point I. The current director vector d̄I in each control point I equals ā3I . This
discrete rotation of nodal basis systems is eponymous for the interpolation method at hand.
The rotational matrix

R = 1 +
sinω

ω
Ω +

1− cosω

ω2
Ω2

with Ω = εijkωi =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 and ω = |ω|
(5)

is calculated via the Rodrigues formula, where εijk is the Levi-Civita tensor. Nodal values ωI
have to be inserted into Eq. (5). These approximation of teh director vector through the element
area is given as

d̄
h

=

nen∑
I=1

NI d̄I d̄
h
,α =

nen∑
I=1

NI,αd̄I . (6)

4.2. Continuous interpolation method - Interpolation after Rotation
The idea of the continuous interpolation method (CIM), which is described in [11], is to
interpolate the rotational parameter ω instead of the director vector itself. Instead of the
interpolation of discretely rotated values as is done in Eq. (6), here the current director vector

d̄
h

= Rdh = R

nen∑
I=1

NIdI (7)

is computed by first interpolating the director vector of the reference configuration and then
applying the rotation R in each integration point. Thus, the condition |d̄| = |d| holds exactly.

Within this approach interpolated values ωh and d̄
h

have to be used for the computation of R.

5. Numerical Example - Impulsively loaded square plate
The simply supported square plate is taken from the shell obstacle course proposed in [12].
The material properties, loadings and dimensions are depicted in Fig. 2. The load is applied
impulsively within the first time step t0 = 0. Due to double-symmetry only one quarter of the
system is modeled. The reference solution of the maximum deflection of the midpoint has been
calculated with 25x25 elements with quartic basis functions with the CIM concept. The purpose
of thi example is to investigate the effect of the different interpolation methods for the director
vector, see Fig. 3. With the DIM concept, NUBRS with p = 6 lead to a decreasing quality of
the solution (cf. Fig. 3b). Here, two different aspects are involved. The approximation of the
deformed geometry increases with higher order basis functions. However, also the area of control
points that influence the director vector increases. If the director vector is rotated before it is
interpolated on curved geometries, the length of the director vector will in general be smaller
than one and this effect increases with an increasing number of involved control points. This
effect decreases with mesh refinement, because the distance and therefore the difference of the
rotation angle of the involved control points becomes smaller. Note that the continuous and
discrete interpolation method of the shell director vector are identical for configuration without
curvature.
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Figure 2. Impulsively loaded square plate
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Figure 3. Comparison between interpolation methods of the shell director vector: a)
Continuous Interpolation Method (CIM) for h- and k-refinement. For p = 6 the results for
all meshes are almost indistinguishable from the reference solution; b) Discrete Interpolation
Method (DIM) for h- and k-refinement.
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