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Abstract. The problem of a dynamic diffraction of a plane monochromatic X-ray wave at the 

absorbing superlattice with a stacking fault between the layers for the trapeziform model of 

superlattice is considered. It is shown, that presence of stacking fault reduces the anomalous 

absorption. The  interference absorption depends on the shift vector and depth of the stacking 

fault and the structural factor of superlattice.  

1. Introduction 

When a plane monochromatic X-ray wave is incident on a superlattice (SL) double diffraction occurs, 

first by atomic planes causing the formation of a modulated X-ray wave, and then by diffraction of the 

latter by the interfaces between layers, since the layer structure acts as a diffraction grating. 

Consequence of this diffraction is appearance of satellites around the principal maximum of X-ray 

diffraction in SL. 

SL based on heterojunction are applied widely in microelectronics and computer techniques [1–3]. 

Dynamic diffraction of X-ray radiation has been applied in [4] for harmonic SL. Work [5] develops 

dynamical theory of X-ray diffraction on one-dimensional perfect SL of arbitrary model. Obtained 

results are employed for different models [6]. Being important in applications, superlattice perfection 

has been investigated by various methods of X-ray analysis [7–11].  

One of the possible defects impairing superlattice parameters is a stacking fault. Work  [12] 

develops the theory of X-ray dynamic diffraction on one-dimensional SL with a stacking fault between 

the layers if a absorption by the medium is neglected. In [13] X-ray dynamic diffraction on a SL with a 

stacking fault between the layers is considered theoretically in the case of interdiffusion of SL 

components if a absorption by the medium is neglected. In [14] we obtained the reflectivity in the 

exact directions of diffraction maxima for SL with a stacking fault between the layers when absorption 

is taken into account. The results are used for square-wave model of SL. 

In this paper we develop the theory of  X-ray diffraction on trapeziform model of SL with a 

stacking fault between the layers when absorption is taken into account.  

 

2. Absorption in the superlattice with a stacking fault 

Let us consider a superlattice of thickness Nz0 (z0 period of SL, N number of  identical layers). Let a 

stacking fault be located at the depth N1z0 in SL (figure 1). In this case, the fault plane divides the  
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crystal into two SLs of thicknesses N1z0 and N2z0 (N1 + N2 = N). Let a plane monochromatic X-ray 

wave of unit amplitude be incident at this SL. The waves emerging from the first SL are incident on 

the second one and for reflection amplitude of SL one obtains [15] 
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where 
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t are, respectively, the reflection and transmission amplitudes of two parts 

of SL; 2  hu   (h is the diffraction vector,  u is the shift vector characterizing the displacement of 

second SL lattice with respect to the lattice of  the first part of SL) and the dash corresponds to 

incidence from the back of the reflecting planes. 
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Figure 1. The geometry of diffraction. 

 

As known, consequence of X-ray diffraction for SL with short period z0 <<   (   the mean 

extinction length of the crystal) is appearance of non-overlapping satellites around the principal 

diffraction maximum, the location of which is defined by an average over the superlattice period 

parameters. It is shown in [5], that for short-period SL within the limits of the mth  reflection one may 

consider the SL as an ideal crystal with the modified Fourier component of the crystal polarizability:  

 ,hm m hM    (2) 

where
h  is the Fourier component of the polarizability of crystal averaged over SL period and 

mM  

the SL model-dependent structural factor of SL. 

Substituting (2) in dynamical formulas of the reflection and transmission amplitudes of ideal 

crystal for symmetrical Laue case [16], we can write: 
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 (sin2 )( )B h mp C     (6) 

 

is a dimensionless parameter proportional to the deviation from the mth reflection direction 
m ,   the 

wavelength of an incident wave, C the polarization factor, B  the  Bragg angle, averaged over SL 
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period, and  1;2i  . 

In [12] we develop expressions for reflectivity within the limits of the m th satellite for non-

absorptive SL with a stacking fault between the layers, depending on the shift vector and depth of the 

stacking fault. We show, that the existence of a stacking fault is reducing satellite intensity. In [13] X-

ray dynamic diffraction on a SL with a stacking fault between the layers is considered theoretically in 

the case of interdiffusion of superlattice components if a absorption by the medium is neglected.  

The procedure of taking absorption into account based on the method used in the classical theory of 

dispersion, i.e. on the introduction of complex parameters of polarizability and its Fourier components: 

                                 ,r ii    
   

,h hr hii        0 0 0 .r ii      (7)   

Since for X-rays the dynamic absorption is usually small, i.e. hi hr   , neglecting terms of the 

order of 2( )hi hr  , for symmetrical reflection one can write:                                      

                                   0 0 cos ,Br hrZ C z   
            

0 0 æcos ,i r hZ Z   (8)        

                                          

                               (sin2 )( ),r B hr mp C             æcos ,i r hp p    (9) 

 

where æ hi hr    and for crystals with a centre of symmetry cos 1h   . 

In [14] we obtained the reflectivity in the direction of m th satellite m   (i.e. for 0p  ) for SL 

with a stacking fault between the layers when absorption is taken into account. The results are used for 

square-wave model of SL. 

In accordance with approach, mentioned above, after some transformations for the reflectivity 

within the limits of the mth  reflection, depending on the deviation from the mth reflection direction 

,m  we obtain the following expression: 
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0D Nz  is the thickness of the superlattice, 02 i     is the coefficient of linear absorption. 

Since the rp dependence of the reflectivity (10) is very lengthy, let us present it for a particular 

case, when    : 
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According to (2) the interference absorption factor of m th diffraction maximum for ideal SL has   

the following form: 0m mM  , where 2
0 2 cos (cos 1 )hi h B rkC p        is the interference 

absorption factor for homogeneous crystal [16]. As is shown in [5], 1mM  for any SL model, 

therefore the interference absorption factor in SL decreases. 

Presence of stacking fault reduces the effect of anomalous absorption. The interference absorption 

depends on the shift vector and depth of the stacking fault. For the maximum shift (   ) the wave 

field, weakly absorbable in the first part of SL, is strongly absorbable in the second one and vice versa. 

3. Trapeziform model 

Artificial SL crystals based on heterojunctions are one-after-another layers of different compositions 

with close interplanar spacings  (like GaAs–AlAs). At early stage after fabrication when interdiffusion 

of semiconductor compounds entering the bilayer composition is absent, SL can be described by a 

rectangular (square-wave, if layers of different materials have the same thickness) model. Taking into 

account the interdiffusion of heteromaterials, one may describe SL by trapeziform model. If the SL 

layers are thin due to the interdiffusion of SL components different materials will be overlapped 

throughout the layer. One may describe such a SL by either sinusoidal or triangular model. 

Assume that in some time after fabrication of SL, a diffusion layer of thickness zd has been formed. 

Denote z1 and z2 the thicknesses of ideal layers. Then SL is described by a trapeziform model whose 

structural factor has the following form [6]:  
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where the following notations are introduced: 
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0  is a parameter characterizing the degree of misfit of heteromaterials, d the difference in 

interplanar spacings of  heterostructures, and the bar denotes the averaging over the SL period. 

By inserting zd = 0 into expressions (15)–(20) the structural factor of rectangular model is obtained. 

On the other hand, at full interdiffusion of semiconductor materials constituting SL, by substitution of 

z1 = z2 = 0 into (15)–(20), the structural factor of triangular model is obtained. 

The numerical calculations are carried out for GaAs–AlAs SL, CuKα radiation, when diffusion 

layer thickness is 20% of the bilayer thickness. With increasing interdiffusion of heteromaterials, 

redistribution of intensity of diffraction maxima takes place. In discussed case the magnitude of the 

principal maximum decreases, while oscillations increase. 
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Figure 2 shows dependence of reflectivity of the principal maximum (m = 0) on dimensionless 

parameter (p) of deviation from the direction of diffraction maximum at  =  and the stacking fault 

depth 1 0 0.1N z  0.Nz  As seen the plot on figure 2(b) becomes asymmetrical. If the depth of the 

stacking fault satisfies the condition 2 0 0.1N z  0 ,Nz  
we obtained the reflectivity of absorbing SL 

similar to figure 2(b), mirrored with respect to Y-axis. 

 

 

  
 

Figure 2. The reflectivity of the principal maximum for    , 1 0.1N  N and zd = 0.2 z0  
 

(a) nonabsorbing SL, (b) absorbing SL 

                             

Figure 3 shows dependence of reflectivity of the principal maximum (m = 0) on dimensionless 

parameter (p) of deviation from the direction of diffraction maximum at  =  and the stacking fault  

depth 1 0N z  2 0 0.5N z  0.Nz  
In this case the plot on the figure 3(b) is symmetrical. 

 

 

  

 

Figure 3. The reflectivity of the principal maximum for    , 1 2N N  
and zd = 0.2 z0  

 

(a) nonabsorbing SL, (b) absorbing SL 

 

4. Conclusion 

In this study we obtained, that in the case of a short-period SL with a stacking fault between the layers, 

taking absorption into account decreases the reflectivity of SL. Presence of stacking fault reduces the 

effect of anomalous absorption. The interference absorption depends on the shift vector and depth of 

the stacking fault and the structural factor of SL (which in turn depends on the interdiffusion degree of 

constituent heteromaterials).  
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