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Abstract. The spectral method applicability to the problem of the charged particles axial
channeling is studied. The quantum state characteristics for the electron motion near the
atomic string [110] direction of the silicon crystal are obtained using this method of Schrédinger
equation numerical solution. The full set of eigenenergies and eigenfunctions for the electron
with longitudinal energy of 5 MeV is computed. The results obtained illustrate the difference
in the wave function morphology for regular and chaotic cases.

1. Introduction

The fast charged particles incident onto the crystal under a small angle to any crystallographic
axis densely packed with atoms can perform the finite motion in the transverse plane; such
motion is known as the axial channeling [1]-[3]. The particle motion in the axial channeling
mode could be described with a good accuracy as the one in continuous potential of the atomic
string, i.e. in the potential of atoms averaged along the string axis. During motion in this
potential the longitudinal particle momentum p| is conserved, so the motion description is
reduced to two-dimensional problem of motion in the transversal plane. This transverse motion
could be substantially quantum [1].

From the viewpoint of the dynamical systems theory, the channeling problem is interesting
because the particle’s motion could be both regular and chaotic. The wave functions of the
stationary quantum states in the situations of regular and chaotic motion in the classical limit
are computed in the present paper. The qualitative difference between them illustrates the basic
statements of the quantum chaos theory [4]-[8].

2. Method
The electron transversal motion in the atomic string continuous potential is described by the
two-dimensional Schrodinger equation

A~

(e y,1) = ih 2 ¥(a,y,1) 1)
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with Hamiltonian
9?2 H?
Oz + dy2

. K2

H = 2E||/c2 +U(z,y) (2

~—

and the value Ej/c? (here E| = (m? ct +pHc 2)1/2) instead of the particle mass [1].

The Hamiltonian eigenfunctions have been found numerically as well as the transverse energy
eigenvalues using the so-called spectral method [9]. For the channeling problem it has been
applied for the first time in [10].

The spectral method idea is the following. Every solution of the time-dependent Schrédinger
equation could be expressed as the superposition

U(w,y,t) =Y Anjtn;(z,y) exp(—iEnt/h) 3)

n7j

of the Hamiltonian eigenfunctions ¢y, j(x,y),

ﬁwn,j(xvy) = Enwn,j(xa y) s

where the j index is used to distinguish the degenerate states corresponding to the energy FE,,.
Computation of the correlation function

:/_o:o /_O; U (2, y,0)¥(z, y, t) dzdy (4)

for the wave function of the form (3) gives

P(t) = Z exp(—iEt/h)A / / 1.5 (T Y) Vs o (2, y)dxdy =

n7n/?j’j/
= Z exp(—iEyt/h) A, ;Ap j16nn S5 = Z ]An]| exp(—iEnt/h) . (5)
n7n/7j7j/ 7.]

Fourier transformation of (5) leads to the expression

PE_/ P(t)exp(iEt/h) dt = 220> |An;[20(E — Ey) (6)
n,j

We see the Fourier transform of the correlation function looks like a series of d-form peaks, whose
positions indicate the energy eigenvalues. So, the method is based on the numerical simulation
of the time evolution of initial wave function ¥(x,y,0) according to time-dependent Schrédinger
equation.

Of course, the numerical integration of (1) could be performed for the finite time interval T
only, so the Fourier transform of the correlation function takes the form

/TP eXp( Et) dt = ZyA il sin [(Bn = Bn)T/20] i(E—En)T} .
0

e

The sin(z7)/z function in the right part of (7) has the main maximum at z = 0, whose
magnitude is increased and width is narrowed with T interval increasing. Its other maxima
and minima at both sides from the main maximum have the lower magnitudes. So, instead of
d-like peaks set we have the superposition of maxima, whose widths are inverse proportional to
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T. The required resolution of the computation dictates the T value, while the expected minimal
distance AFE between the neighbor energy levels dictates the resolution, and condition for T is

T > 2rnh/AE . (8)

To avoid the superposition of side maxima of sin(z7)/x function from neighbor energy levels
this requirement should be enhanced. In our calculations we use

T = 167h/AE . 9)

The numerical procedure based on these ideas has been developed and successfully used for
transverse energy levels search with high precision in [11]-[13].

The stationary wave functions could be obtained with the spectral method also [9, 10]. The
superposition (3) multiplied by exp (iF,t/h) and integrated over the time interval 7' provides
the eigenfunctions v, j(x,y) of the eigenvalue Ey:

T , T

i
/\Ifxy, exp(hEnt> Z;Anﬂﬁn]my /exp{ (En E')}dt: (10)
0 0

sin[(E, — E)T/2h ,
S

n',j

For the large enough T the left part integral in (10) is proportional to either eigenfunction
Yn(x,y) (without state degeneration), or ¢, ;(x,y) superposition (if n-th energy level is
degenerated) with a good accuracy.

3. Wave functions in the regular case

The field of single atomic string has the axial symmetry U(z,y) = U(r), if the neighbor strings
influence is neglected. This symmetry allows us to classify the electron quantum states. In the

polar coordinates
- R |10/ 0 1 02
H=———<|-"—|(7r— - — . 11
28] [r ar (r ar) T a&] +O) ()

The equation for the eigenfunctions and eigenvalues of the operator (11)

ooy, 1
2E)/c? |ror "or r2 0p?

allows us to separate the variables, and their solutions are

P(r, @) +U(r)(r, ) = ELy(r, ¢) (12)

1 .
wnT,m(Ta 90) = \/72771' elmcppnr,\m\(r) ) (13)

where the p, _|,(r) function is the solution of

2E||/02 h2 m2

(EL = U(r) - 2E||/02r2> Prm|(T) =0 . (14)

10 ( 0 ) () +
2 (2 -
ror \ ar) Prooml

The particle quantum states in the potential U(r) with axial symmetry are characterized by two

quantum numbers: the radial one n, and projection m of the orbital momentum to the symmetry
axis of the field. The n, is equal to the number of zeroes of the function p,, ., (r) at finite r
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(except the possible zero at r = 0). The states with m = 0 are non-degenerated, while ones
with non-zero m are doubly degenerated by the signum of m. The eigenvalues of Hamiltonian
(11), i.e. the eigenvalues of the transversal motion energy of the channeling electron, depend in
general on both quantum numbers: E| = E, .

First of all let’s consider the low energy (E| = 5 MeV) electron’s motion near direction of
the atomic string [110] of the Si crystal. The continuous potential could be represented by the
modified Lindhard potential [1]

Ur(ey) = —Uotn (14— (15)
1\Z,Y) = 0 l'2+y2+OéR2 )

where Uy = 60 eV, a = 0.37, 3 = 3.5, R = 0.194 A (Thomas Fermi radius).

In the upper left plot in figure 1 the wave function of the ground state is shown. It has single
maximum in center (r = 0) and has not zeroes at all (except the asymptotic zero at r = o).

The other wave functions are represented by black (for ¢(x,y) < 0) and white (for ¢(z,y) > 0)
regions on the plane (z,y) (see figure 1). The irregularity on the periphery of some plots is due
to numerical uncertainties. This representation allows us to classify the wave functions using
the quantum numbers n, and m easily, by the wave function zeroes counting.

Indeed, at the m = 0 (upper row in figure 1) the wave functions ¢, o(r, ¢) depend on radial
coordinate r only, so the ¥ (x,y) = 0 zero lines are concentric circles.

Each next solution py, o(r) of the equation (14) at m = 0 in the solution sequence, where
the corresponding eigenenergy is increased, has more zeroes than previous by exactly one. So
we can enumerate the corresponding quantum eigenstates by the quantum number n, which is
equal to the number of zeroes of the radial wave function p,, o(r). Practically n, is equal to
number of borders between the concentric regions.

For the m # 0 case the situation is analogous. The degeneration by signum of m means the
our method provides for each E| eigenvalue the superposition of 1, (7, ¢) and ¢y, —m(r, @)
functions with equal weights instead of eigenfunction (13). This superposition looks as follows:

P, jm| () cOS {|m]g0 + am} ) (16)

So, the m value for calculated wave function equals to number of white (or black) sectors on the
plot in figure 1. The energy levels of the considered system classified by quantum numbers n,
and m are presented in figure 2.

The character feature of the calculated stationary wave functions is the crossing of ¥ (z,y) = 0
lines, which forms the chessboard-like picture. The counting of these zero lines allows us to find
the quantum number values easily. The crossings presence is due to the considered system
integrability. Indeed, this two-dimensional system has two degrees of freedom and two integrals
of motion — transversal energy E| and projection m of orbital momentum to the field symmetry
axis. So, the variables separation is possible in the motion equation, which appears integrable
in quadratures. The presence of the zero lines (surfaces for dimensions number more than two)
crossings (or thin quasicrossings) appears a general property of quantum systems, whose classical
counterparts demonstrate the regular dynamic [4]-[7].

4. Wave functions in the chaotic case

The qualitatively different picture is observed for the non-integrable systems, for example, the
electron motion in the field of two neighbor atomic strings [110] of Si crystal. This field (the
contribution from other atomic string pairs could be neglected) could be written as

U(m,y):Ul(:v,y+a/8)+U1(m,y—a/8) ) (17)
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Figure 1. FEigenfunctions of the electron with B =
5 MeV transversal motion in the field of atomic string
[110] of Si crystal for the m = 0 (upper row), m = 1
(second row), m = 2 (third row), and m = 3 (lower row)
cases. The red dashed curve is the border of the classically
allowed region U(z,y) < E| .
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where @ = 5.431 A is the lattice period. Some calculated eigenfunctions of the electron with
longitudinal energy £ = 5 MeV channeling in this field are shown in figure 3, while all the
eigenvalues — in table 1. Without the field axial symmetry the single integral of motion (energy
E ) still exists for two-dimensional system. This leads to dramatical change of the wave functions
nature: the zero lines ¥(z,y) = 0 have not crossings. However the low energy Ej = 5 MeV
case not allows us to see this change clearly, so some wave functions of the electron channeling
with F) = 500 MeV are presented in figure 4. The latter energy is high enough to ensure big
total number of energy levels and small inter-level distances [12]. Namely this situation, similar
to one in the classical mechanics with its continuous energy spectra, is needed for the quantum
chaos manifestation studies [5, 6, 8]. We can see bizarre picture of black and white “islands”
(see figure 4) instead of chessboard-like one for the axially symmetrical field. This behavior is
general for the non-integrable systems [4]-[7].

In the classical mechanics the integrability (or not) of the system is closely related with
regularity (or chaoticity) of motion of this system [5, 6]. The dynamical chaos in the classical
case is the essential sensitivity of the system motion to the initial conditions, which leads to
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Table 1. Full set of eigenenergies £, (eV) of the electron with Ey =5 MeV in the field of two
neighbor atomic strings for each of four symmetry classes of the eigenfunction.

\Ij(_xvy> = \Il(xay)
\II(IE, *y) = \Il(xay)

\I/(—[E,y) = \Ij(m’y)
\I’(l’, 7?/) = 7\11($7y)

\IJ(—l‘,y) = —\I’(ﬂﬁ,y)
\IJ("E» *y) = \I/(l‘,y)

\Ij(—x’y) = —\If(:E,y)
\IJ(JL‘, *y) = 7\Ij(l‘ay)

—49.0303 —48.7077 —48.711 —48.982
—31.6285 —23.7033 —24.3553 —30.8612
—24.894 —16.7748 —17.8317 —23.529
—19.98 —8.5155 —12.2515 —16.036
—12.3253 —6.3875 -9.101 —9.967
—11.214 —4.696 —6.39 —8.37175
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Figure 4. The eigenfunction samples for the electron with longitudinal energy of E) = 500 MeV
channeling in the field of one (left plot) and two neighbor (center and right plots) atomic strings
[110] of Si crystal.

exponential divergence of the initially close trajectories. The trajectories still deterministic
(because the noise or accidental forces are assumed absent in the system) however appear very
like to random ones.
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Table 2. The spectral method algorithm parameters.

longitudinal energy space lattice time step value number of time energy step
E\, MeV dt, eV—1! steps N value dF/, eV

5 256 x 256 9.2 x 107° 27324375 2.5 x 1074
500 384 x 384 9.2 x 107° 136621875 5.0 x 107

In the quantum mechanics case the exponential dependence on the initial conditions is
absent. However the behavior of systems, which are regular and chaotic in the classical limit, is
qualitatively different by the number of features. The search and investigation of these differences
is the quantum chaos topic contents [8]. The observed difference of the wave functions structure,
namely, zero lines ¥ (x,y) = 0 picture of these functions is the one of manifestations of the
quantum chaos.

5. Conclusion

The quantum mechanical problem of the fast electron motion in the axially-symmetric field
of single atomic string [110] and the field of two neighbor ones of Si crystal is considered.
The spectral method suitability for numerical solving, i.e. obtaining the eigenfunctions
and energy eigenvalues, of the Schrédinger equation for this system in the axial channeling
mode is demonstrated. This approach could be used for investigation of the quantum chaos
manifestations in the electron axial channeling through the crystal.
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Appendix

First of all the spectral method algorithm was implemented on the MATLAB for debugging.
After the code quality was proven the algorithm was implemented on C language using FFTW
(for fast Fourier transforms) and GSL (for complex values calculations) libraries, because the
MATLAB FFT performance and memory constraints appear unsatisfactory. The production
calculations were performed under UNIX-like operating systems on computers of amd64 multi-
processor architecture. The same algorithm with minor changes allows us to calculate both
energy levels and (in the separate run) eigenfunctions of the considered system. The algorithm
parameters for present data calculations at Fj = 5 and 500 MeV are summarized in table
2. For field of both single and two neighbor atomic strings the full set of eigenenergies and
eigenfunctions at E) =5 MeV was computed.
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