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Abstract. The possibility of quantitative texture analysis by means of parametric x-ray
radiation (PXR) from relativistic electrons with Lorentz factor γ > 50MeV in a polycrystal is
considered theoretically. In the case of rather smooth orientation distribution function (ODF)
and large detector (θD � 1/γ) the universal relation between ODF and intensity distribution is
presented. It is shown that if ODF is independent on one from Euler angles, then the texture is
fully determined by angular intensity distribution. Application of the method to the simulated
data shows the stability of the proposed algorithm.

1. Introduction
The orientation distribution function (ODF) of a polycrystalline material provides quantitative
description of crystallograhic texture and enables to calculate the anisotropic physical properties
of a polycrystalline material [1, 2]. There are several methods of quantitative texture analysis
that provide the ODF. The most common is based on measurement of Bragg x-ray diffraction
peak as a function of polycrystalline sample orientation, the so called pole figures. Provided
with pole figures measured for several reciprocal lattice vectors there are several approaches to
reconstruct the ODF [3–6]. The same methodology is used for processing the neutron diffraction
data, the neutron technique being advantageous for large samples with coarse grains, e.g.
geological samples [7]. Another widespread technique for quantitative texture analysis is electron
backscattering diffraction (EBSD) [8]. This technique directly provides orientation of individual
grains at the investigated cross section, unlike the x-ray and neutron diffraction techniques that
provide the texture information in indirect way, but from large statistical ensemble of grains
from the gauge volume.

Parametric x-ray radiation (PXR) is radiation in x-ray frequency range from relativistic
electrons interacting with crystal target, the radiation parameters being directly related to
crystallographical properties of the target [9]. Theoretical description [10, 11] and experiments
[12–15] on PXR from a polycrystal show that there is a connection between texture of a
polycrystal and PXR spectrum and intensity distribution. One of the obstacles in applications of
PXR is its low total photon yield, however, the experiments [14, 15] revealed that the intensity
of PXR from a polycrystalline Mo can be comparable with the intensity of its characteristic
Kα-line. In the present contribution we investigate theoretically if it is feasible to perform
quantitative texture analysis based on PXR data and to reconstruct the ODF.
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2. Calculation of PXR from polycrystals
2.1. Basic relations for PXR in polycrystals
Orientation distribution function defines the volume part of crystallines having certain
orientation:

dV

V
= f(ϕ,ψ, θ) sin θdϕdψdθ, (1)

here ϕ,ψ, θ are the 3 Euler angles, see figure 1a; the blue coordinate system corresponds to
the sample, xy-plane being the sample’s surface, the red coordinate system is attached to the
crystallographic unit cell of the material.

Figure 1. (a) Geometry of the problem, (b) Geometry of PXR, (c) The angles Φ, λ,Θ.

If the ODF is known, the distribution of PXR intensity resulting from interacting of
relativistic electrons with polycrystal can be found. If one can use kinematical theory of PXR,
which is justified for most cases of polycrystaline materials [15], the distribution of PXR intensity
is given by (see [10] for more details):

I(Θ,Φ) =
dN

dΦdΘ sin Θ
= T (|g|,ΘB)

∫ 2π

0
f(ϕ,ψ, θ)dλ, (2)

T (|g|,ΘB) = αL
J

e

| cos 2ΘB|
|g|3

|κg|2((1 + cos2 2ΘB) ln(ξDeff +
√
ξ2Deff + 1)− cos2 2ΘB),

here N is a number of emitted photons, the introduced angles are shown in figure 1, ϕ,ψ, θ are
expressed through Φ, λ,Θ, see [10] and figures 1a, 1c; ξDeff = γθD and θD is the angular size
of the detector (in radians); γ = E/mc2 is the Lorentz factor of an electron with energy E;
g is the reciprocal lattice vector, α = 1/137, J is the electron beam current, e is the electron
charge, L is the thickness of the polycrystal film, κg = χg(ω)ω2/c2, κg does not depend on w
with an appropriate accuracy, see [10]. ω, χg(ω) are the frequency and the X-ray susceptibility,
respectively. Here for the convenience of further calculations we consider effective intensity I,
which is a function of angles Θ,Φ. It is connected with observable intensity I0(2ΘB,Φ) as

I = 4 sin ΘBI0. (3)
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3. Inverse Problem
In this section we describe the way one can reconstruct ODF through measured angular intensity
distribution. One can obtain experimentally measured I0(2ΘB,Φ) from a group of reciprocal
lattice vectors g with the same |g| by the method suggested in [10], employing a detector with
narrow range of detectable energies. However, the last procedure should be elaborated as it was
shown in [16–19] that at relatively low electron energies (conventionally γ < 50) the contributions
of ”side” reflexes [16] in the resulting intensity distribution are considerable. Thus, the intensity,
related to the vectors g with the same |g|, cannot be distinguished with appropriate accuracy.
It is caused by widening of PXR peaks under low γ. Therefore we have to restrict the realm of
application of the presented approach to electron energies, corresponding to γ > 50. Suppose
one has experimentally measured I0(2ΘB,Φ), then I1(Θ,Φ) = dN/dΦdΘ sin Θ is calculated in
a straightforward way by equation (3), Θ ∈ [0, π/2].

Below we make an assumption that ODF does not depend on ψ, that is f(ϕ,ψ, θ)→ f(ϕ, θ).
It corresponds to quite large class of fibre textures that are observed in thin film samples [20].
Let us rewrite equation (2) in detail taking into account the summation over g with the same
|g| ≡ g.

I(Θ,Φ)

T (|g|,ΘB)
=

∑
g:|g|=g

∫ 2π

0
f(ϕ(Θ,Φ, λ, g), θ(Θ,Φ, λ, g))dλ. (4)

To proceed further let us use spherical function decomposition [20] and note a useful property
of spherical function integration over the rotation around reciprocal lattice vector g:∫ 2π

0
Ylm(ϕ(Θ,Φ, λ, g), θ(Θ,Φ, λ, g))dλ = clm(z)Ylm(Θ,Φ), (5)

here clm(z) = 2πimPl(z) and Ylm(θ, ϕ) is a spherical harmonic, Pl(z) is a Legendre polynomial.
(x, y, z) = g/|g| in the red coordinate system. Thus, if we regard substitution ϕ →
ϕ(Θ,Φ, λ, g), θ → θ(Θ,Φ, λ, g) and following integration over λ as an operator, say R̂g then
Ylm is its eigenfunction and clm is the corresponding eigenvalue. By virtue of equation (5) it
follows from equation (4) that

(
I

T
)lm =

∑
g:|g|=g

clm(z)flm. (6)

Some of the coefficients in equation (6) vanish due to symmetry considerations, in particular

if l is odd then (
I

T
)lm = 0. It happens because in this case clm(z) is an odd function and in

the summation in equation (6) for every g there is always −g as well. Therefore
I

T
should be

defined as

I

T
=


I1(Θ,Φ)

T (Θ)
, Θ ≤ π

2
I1(π −Θ, π + Φ)

T (π −Θ)
, Θ ≥ π

2

Further simplifications can be obtained if one considers crystallographic symmetry of the
material under study. As an example we will consider diamond-like crystal lattice, in this case it
appears that

∑
g:|g|=g c2m(z) = 0 for any |g|. Hence we can determine only harmonics of f(ϕ, θ)

with even (except for 2) l. Similar situation takes place for quantitative texture analysis based
on x-ray diffraction pole figure measurement [20].
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3.1. Nanodiamond film example
The ODF in equation (1) does not take into consideration lattice symmetries. In fact, there
are orientations of the unit cell, say (ϕ,ψ, θ) and (ϕ1, ψ1, θ1), that cannot be distinguished.
Therefore, if one wants to find volume part of crystallites having orientation (ϕ,ψ, θ), then he
has to add contributions corresponding to indistinguishable orientations as well. That is

dV

V
= f(ϕ,ψ, θ) sin θdϕdψdθ + f(ϕ1, ψ1, θ1) sin θ1dϕ1dψ1dθ1+

...+ f(ϕn, ψn, θn) sin θndϕndψndθn ≡ F (ϕ,ψ, θ) sin θdϕdψdθ,
(7)

Below we will seek for the function F (ϕ,ψ, θ), which under considered assumption turns into
F (ϕ, θ) and use F as ODF. Consider two diamond lattice symmetries, that will let us find F
from flm:

1) The rotation of the unit cell in figure 2a about X-axis by π and then about Z-axis by π
results in equivalent orientation. Hence, one has to take the following combination instead of
f(ϕ, θ)

F0(ϕ, θ) = f(ϕ, θ) + f(ϕ+ π, π − θ),

It appears that F0 does not contain flm with odd l.
2) Another symmetry can be found if one considers elementary unit cell, see figure 2b. Green

line represents the diagonal of cubic unit cell. There is one atom on it. The facets of the
parallelepiped are identical rhombuses. Thereby, if one rotates it around its diagonal by ±2π/3
he gets initial unit cell and, consequently, lattice. Thus, there is a triad axis.

Figure 2. (a) Unit cell and attached frame of reference, (b) Elementary unit cell of the diamond
lattice.

Mathematically, this triples the number of summands

F (ϕ, θ) = F0(ϕ, θ) + F0(ϕ
∗, |π

2
− θ|) + F0(ϕ+

π

2
,
π

2
),

where

φ∗ =

{
ϕ+ π , θ ≤ π

2

ϕ , θ ≥ π
2
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Eventually, it appears that F does not contain f2m. That allows one to find F through
even (except l = 2) harmonics of f that are known from equation (6). It is F that yields
dV (dϕ, dψ, dθ) by virtue of equation (7). This formally allows to find ODF in terms of series
in flm. It appears that for quite smooth ODFs several spherical harmonics (up to l = 5) are
enough to get rather accurate solution.

The stability of the solution was tested. We modeled experimental intensity distributions by
applying Poisson distribution to analytical solutions from Subsection 3.1 of [10]. We took the
parameters of the polycrystalline diamond film from [21] and the electron beam from ASTA,
Fermilab [22]. Then we found F (φ, θ) by the above method. On the other hand, we had F (φ, θ)
expressed through initial f1(ϕ, θ) (see [10]). See figure 3 for comparison of the results. In the
plots z-axis corresponds to F (φ, θ), in xy-plane we use polar coordinates. That is, the distance
from the reference point (x = 0, y = 0) equals θ(rad), the angle φ is defined in a conventional
way. It is seen in figure 3b that even if exposure time is as small as 1 second, one may obtain
relatively good reconstruction of ODF. It results from considerable number of emitted photons
(∼ 106), which is an advantage. In figure 3c F (φ, θ) is strongly distorted due to high deviations
of number of emitted photons from its mean value at low exposure time (or number of incident
electrons). Other parameters of the case: angular size of the detector θD = 0.033 rad, maximal
l (index in spherical harmonic) used in calculations of reconstruction lmax = 3, parameters of
initial ODF Θpref = 1.0 rad, S = 6.0 (see [10]). It is crucial to note that F can be determined by

Figure 3. z ≡ F (φ, θ), x = θ cosφ, y = θ sinφ. (a) Exact ODF, (b) Reconstructed, 6 × 1013

electrons (exposure time 1 sec), (c) Reconstructed, 6× 108 electrons.

intensity distribution from all g that is easier to obtain on experiment (by direct measurement
of angular intensity distribution without sorting out a contribution from a group of g with the
same |g|). Rewriting equation (2), but now summing over all g and taking into account structure
of T (|g|,ΘB) one obtains

I(Θ,Φ)

αL
J

e
| cos 2ΘB|((1 + cos2 2ΘB) ln(ξDeff +

√
ξ2Deff + 1)− cos2 2ΘB)

=

=
∑
g

|κg|2

|g|3

∫ 2π

0
f(ϕ(Θ,Φ, λ, g), θ(Θ,Φ, λ, g))dλ.

(8)

Equation (8) is analogous to equation (4). Further derivation is essentially the same, though it
is a little more cumbersome.

RREPS2015 IOP Publishing
Journal of Physics: Conference Series 732 (2016) 012015 doi:10.1088/1742-6596/732/1/012015

5



4. Discussion
To reconstruct the ODF based on the approach presented above one has to measure the angular
distribution of x-ray yield. In contrast to x-ray diffraction pole figure measurement, no sample
rotations are needed, and, provided with large area detector with moderate energy resolution,
one can collect all the necessary information in one shot. Supposing ODF independent on ψ
that would be enough for the ODF reconstruction. In case of electron beam with large spot
size and realistically high current (like at [22]) the 1 sec exposure time is enough to obtain
satisfactory statistics, so one potentially can apply this technique for in-situ investigations, e.g.
texture changes due to temperature changes or stress.

Further investigation of the method will be the subject of subsequent publications. The
generalization to the case of an arbitrary ODF will be the next step. Introducing another
variable, such as the angle between the film’s plane and the electrons’ velocity (say β) might
solve this problem.

5. Conclusions
Based on relation between ODF and the intensity distribution (equation (2)) the algorithm of
determining ODF (independent on ψ) through the intensity distribution is described. It is based
on expansion in series of spherical harmonics, several components (up to l = 5 for instance) being
enough to preserve a good accuracy in case of rather smooth ODF. The solution proves to be
stable (with respect to Poisson distribution of number of emitted quanta) at a large number
of emitted photons (∼ 106 per sec) reachable at e.g. ASTA facility [22]. Described method
does not need sample tilting as it requires only angular intensity distribution (if ODF does not
depend on ψ), hence, in-situ texture changes may be potentially observed. Introducing another
variable (measurement of intensity distribution at different angles β) may allow one to generalize
the method to arbitrary ODF.

Appendix

Below we will provide some useful relations:
We’ll make use of the rotation matrixcosϕ cosψ − cos θ sinϕ sinψ − cos θ cosψ sinϕ− cosϕ sinψ sin θ sinϕ

cosψ sinϕ+ cos θ cosϕ sinψ cos θ cosϕ cosψ − sinϕ sinψ − sin θ cosϕ
sin θ sinψ cosψ sin θ cos θ

XY
Z

 =

xy
z

 =

=

sin Θ cos Φ
sin Θ sin Φ

cos Θ

 , (A.1)

(X,Y, Z) and (x, y, z) correspond to red and blue coordinate systems respectively.
Further,

Ylm(θ, ϕ) ∼ exp(imϕ)Pml (cos θ) = exp(imϕ) sinm θ
dmPl(cos θ)

(d cos θ)m
,

where Pml is an associated Legendre polynomial. Let us define

Mlm(t) =
dmPl(t)

dtm
.

Add up first two lines in equation (A.1), the second being multiplied by i. This way, one
immediately gets exp(iΦ) on the right-hand side. Using connections between ϕ,ψ, θ and Φ, λ,Θ
(see Appendix of [10]) one can find exp(iϕ) on the other side as well

exp(iϕ) sin θ = exp(iΦ)(
√

1− z2 sinλ+ i(z sin Θ−
√

1− z2 cos Θ cosλ)).
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Again, from geometrical connections between angles one has

cos θ = z cos Θ +
√

1− z2 sin Θ cosλ.

Thus, we have parts of Ylm(θ, φ) in a convenient form. An analogue of equation (5) takes the
form∫ 2π

0
(
√

1− z2 sinλ+ i(z sin Θ−
√

1− z2 cos Θ cosλ))mMlm(z cos Θ +
√

1− z2 sin Θ cosλ)dλ =

= clm(z)Pml (cos Θ).

We considered m ≥ 0. The case m ≤ 0 is essentially the same.
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