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D.F., Mexico

E-mail: hess@nucleares.unam.mx
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Abstract. We review the concept of forbiddenness as introduced by Smirnov and Yu M.
Tchuvil’sky [1], which states that most of the properties of nuclear reactions and cluster structure
is based on structural effects (Pauli exclusion principle). This becomes also clear when one tries
to obtain the ground state of the united nucleus by two heavy clusters, which is not possible
when all excitations are put into the relative motion. Smirnov et al. introduced the concept of
forbiddenness, which is defined as the minimal number of relative oscillation quanta which have
to be shifted to internal excitations of the clusters, such that the ground state can be reached.
We show that Smirnov et al. committed and error in the derivation, leading us to reevaluate
the derivation of the forbiddenness. We deduce the correct expression for the forbiddenness,
leading to a simple interpretation and implementation in a cluster model and some applications
are presented.

1. Introduction
The cluster model in nuclear physics, as introduced by Wildermuth and Kanellopoulos [2, 3],
relates the shell model of the united nucleus, with its SU(3) structure for light nuclei, to the
shell model of two or more clusters. For heavy clusters, the pseudo-SU(3) model can be applied
[4, 5], which takes into account effectively the spin-orbit interaction, allowing still a SU(3)
picture. In order to satisfy minimally the Pauli-exclusion principle, for example in a two cluster
system a minimal number of oscillation quanta has to exists in the relative motion. However,
still antisymmetrization between the two clusters has to be applied, leading to quite involved
calculations. This was resolved in [6, 7], where the SU(3) irreducible representations (irreps) of
the clusters were coupled with the irrep of the relative motion and the result finally compared
to the complete shell model content. The overlap of the list of the SU(3) coupling with the
shell model content gives the microscopic model space of the Semimicroscopic Alegbraic Cluster
Model (SACM). The SACM was applied with great success to many nuclei. We only mention
the study of decay preferences in clusterization of ternary systems [8], hyperdeformed systems
[9], energetic considerations in clusterization [8, 10], studies of shape isomers in 56Ni [11] and
radiation capture in [12]. In [13] nuclei with the structure core+α where considered, of great
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importance in understanding fusion processes in heavy stars. These are only the most recent
activities but there are many more in the past within the SACM.

Within the SACM, in order to satisfy the Pauli-exclusion principle, all missing oscillation
quanta were put into the relative motion. This procedure works as long as the lighter cluster
is not ”too heavy”. Smirnov et al. [1] demonstrated that when the light cluster is too large
(starting from A greater than 12), the ground state of the united nucleus cannot be reached,
except if one allows internal excitations in the clusters, i.e., part of the missing oscillation quanta
are transferred to the internal excitation of the clusters. The minimal number of quanta needed
to achieve an overlap is called the forbiddenness, nc. They also illustrated that fusion and fission
properties are governed by the forbiddenness. For example, if in a fusion process for a given
system of two colliding nuclei the forbiddenness is large (the ground state can not be reached),
the complete fusion is more inhibited than when the forbiddenness is lower.

Thus, in order to describe the ground state of heavy nuclei within the SACM, the
forbiddenness has to be determined. Unfortunately, it turned out that the derivation of the
forbiddenness in [1] is flawed and we were obliged to obtain it from first principles. This
flaw forced others to define an alternative forbiddenness [15], which at least allowed to judge
approximately which clusterization is more allowed compared to others, see Ref. [8].

In this contribution be will shortly explain the deduction of the forbiddenness, published
elsewhere [14]. In section 2 we will discuss the derivation, showing where the considerations in
[1] went wrong. As a result we will obtain a very simple rule on how to obtain the value of the
forbiddenness, which also allows to do explicit calculations of heavy cluster systems in future.
At the end of the same section two applications are presented and in section 3 conclusions are
drawn.

2. Determination of the forbiddenness
In [1] a simple example was considered to illustrate the need of the concept of forbiddenness:
40Ca+40Ca → 80Zr. The U(3) irreps of these nuclei are [20, 20, 20] for 40Ca and [60, 60, 60] for
80Zr, i.e., all SU(3) ireps are (0, 0). The number of oscillation quanta in 40Ca is 60, thus the
sum of the two clusters is 120. The number of oscillation quanta in 80Zr is 180. The Wildermuth
condition states that in this case additional 60 quanta have to be added in order to satisfy the
Pauli exclusion principle. If all these quanta are put into the relative motion, as done in the
SACM, the SU(3)-irrep of the relative motion is (60, 0), which has to be coupled with the cluster
irrep (0, 0), leading to (λ, µ) = (60, 0), i.e., not to the ground state of 80Zr !

The solution is to allow excitations in the cluster system: Let [nr, 0, 0] be the irrep of
the relative motion (its SU(3)-irrep is (nr, 0)), in order to couple to the ground state of
the Zr-nucleus, we need an SU(3)-irrep (0, nr), which is obtained by the cluster U(3)-irrep
[40 + nr, 40 + nr, 40]. Thus the number of excitation quanta in the cluster system is nc = 2nr.
When n0 denoted the minimal number of oscillation quanta to add according to Wildermuth
(n0 = nc + nr), then n0 = 3nr = 60, or nc = 2nr = 40. This number was not obtained in [1].

We thus needed to reanalyze the calculations in order to obtain a new answer.
The coupling of the cluster system, with the SU(3)-irrep (λc, µc), with the relative motion

(nr, 0) to a total irrep (λ, µ) can be cast into the following expression of U(3)-irreps:

[λc + µc + a, µc + b, c]⊗ [nr, 0, 0]
→ [λc + µc + a + k1, µc + b + k2, c + k3] , (1)

where we skipped all possible columns with three boxes in the Young diagram. For example, in
the case of 40Ca the U(3) Young diagram is given by [20, 20, 20], which is equivalent to [0, 0, 0]
and both give the SU(3) irrep (0,0). The cluster irrep is given by [λc + µc, µc, 0] to which we
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Figure 1. Graphical representation of the direct product of Eq. (1). The a + b + c boxes
added to the cluster irrep are distributed within the three rows. The number of quanta from the
relative motion nc = k1 + k2 + k3 are also distributed after having applied the direct product.
The arrow indicates the coupling to the Young diagrams with the structure shown. In general
a sum of many irreps appear.

add a certain number of boxes, the sum given by the excitation quanta nc = a + b + c. a boxes
are added in the first row, b in the second and c in the third one. Finally, the relative motion
is added such that ki boxes are added to the i’th row, with nr = k1 + k2 + k3. In all steps, the
number of boxes in the first row of a Young diagram has to be larger or equal than those in the
second row and these larger or equal than those in the third row. An illustration of the coupling
procedure is given in Figure 1. This leads to the following relations:

0 ≤ k2 ≤ λc + λ0 , 0 ≤ k3 ≤ µc + µ0

λ = λc + λ0 + k1 − k2 , µ = µc + µ0 + k2 − k3

λ0 = a− b , µ0 = b− c , (2)

where λ is given by the difference in the number of boxes of the first row to the second one and
µ by the difference in the number of boxes of the second row to the third one.

The relations in (2) have to be resolved with the constraint that nc is minimal. In [14] the
explicit derivation is given and here we restrict to the main result:

nc = max
[
0,

1
3
{n0 − (λ− µ)− (2λc + µc)}

]

+max
[
0,

1
3
{n0 − (λ + 2µ) + (λc − µc)}

]
. (3)

The n0 is given by the Wildermuth condition and (λ, µ) is determined by the ground state or any
other excited state of the united nucleus, thus these numbers are fixed. The only numbers which
still can be changed are λc and µc. In order to obtain a minimal value for nc the (2λc + µc) has
to be maximized and (λc − µc) has to be minimized. The first relation implies a large deformed
system, while the last one requires that this system is as oblate as possible (µc > λc), which can
be interpreted as a large most compact, oblate system.

To determine the forbiddenness is now straight forward. For example, for the case, given
above, we have n0 = 60 and (λ, µ) = (0, 0) and (λc, µc) = (0, 0). Thus, nc = max

[
0, 60

3

]
+

max
[
0, 60

3

]
= 120

3 = 40.
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Table 1. A series of 2-cluster systems, all belonging to the nucleus 236
92 U144 are enumerated (first

column). In the last column the forbiddenness nc for these systems is evaluated.
No. Two cluster system United cluster nc

1 4
2He2 + 232

90 Th142
236
92 U144 0

2 20
10Ne10 + 216

82 Pb134
236
92 U144 4

3 24
10Ne10 + 212

82 Pb130
236
92 U144 4

4 26
10Ne16 + 210

82 Pb128
236
92 U144 2

5 28
12Mg16 + 208

80 Hg128
236
92 U144 4

6 30
12Mg18 + 206

80 Hg126
236
92 U144 4

7 32
14Si18 + 204

78 Pt126
236
92 U144 0

8 34
14Si20 + 202

78 Pt124
236
92 U144 6

9 40
22Ti18 + 296

70 Y b126
236
92 U144 16

10 66
36Kr30 + 170

56 Ba114
236
92 U144 20

11 66
22Ti44 + 170

70 Y b100
236
92 U144 32

12 128
50 Sn78 + 108

42 Mo66
236
92 U144 28

13 132
50 Sn82 + 104

42 Mo62
236
92 U144 36

The forbiddenness will play an important role in extending the SACM, allowing that the light
clusters have a large mass and the treatment of heavy nuclei. In the Hamiltonian of the model a
dependence of nc has to be included and also for the calculation of the spectroscopic factor. In
[16] an algebraic expression for the spectroscopic factor was given, which is able to reproduce for
cluster+α systems the within the SU(3) model theoretically determined spectroscopic factors
of light nuclei [16] by 1 to 3 percent. The formula depends on (λi, µi) (i=1,2), the SU(3) irreps
of the clusters in their ground state, (λc, µc), the cluster irrep, (λ, µ), the final SU(3) irrep and
nπ = n0 + ∆nπ, the number of quanta in the relative motion. In the new expression, (λc, µc)
is changed to (λc + λ0, µc + µ0) and nπ to n0 − nc + ∆nπ, where ∆nπ is the number of relative
excitation quanta with respect to 0h̄ω.

In Table 1 the forbiddenness is listed for different partitions of 236U. When the light cluster
has A < 12, the forbiddenness is zero and only in rare example it might be zero for larger
clusters. In figure 2 the forbiddenness is plotted versus the mass of the light cluster. As can be
appreciated, the forbiddenness increases toward larger clusters, which reflects the property that
in order the system can fission into the two clusters, both clusters have to be in general in an
excited state. The inverse process, i.e. fusion, also is largely inhibited allowing molecular states,
but reducing the probability for fusion.

The same data are listed in Table 2 for 252Cf and the forbiddenness is plotted versus the mass
of the light cluster in Figure 3.

In both systems, we see the structural effect (the Pauli principle) on the structure of fission
and fusion processes, as discussed in [1]. The implication of the extension of the SACM is clear:
Not only we have to include in the Hamiltonian a dependence on the forbiddenness but also the
algebraic expression of the spectroscopic factor, as proposed in [16].

3. Conclusions
We have derived an expression for the forbiddenness, as defined in [1]. The result is easy to
implement within the SACM, for the inclusion of systems where the light cluster has a large
mass. Using the pseudo-SU(3) model [4, 5], this concept can also be introduced easily for heavy
nuclei, to which we will dedicate our effort in near future.
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Figure 2. Graphical representation of the results from Table 1. The forbiddenness is depicted
versus the mass of the lightest cluster.
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Figure 3. Graphical representation of the results from Table 2. The forbiddenness is depicted
versus the mass of the lightest cluster.
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Table 2. A series of 2-cluster systems, all belonging to the nucleus 252
98 Cf154, (λ, µ) = (56, 10),

are enumerated (first column). In the last column the forbiddenness nc for these systems is
evaluated.

No. Two cluster system United cluster nc

1 4
2He2 + 248

96 Cm152
252
98 Cf154 0

2 16
8 O8 + 236

90 Th146
252
98 Cf154 0

3 20
6 C14 + 232

92 U140
252
98 Cf154 4

4 24
10Ne14 + 228

88 Ra140
252
98 Cf154 4

5 38
14Si24 + 214

84 Po130
252
98 Cf154 4

6 40
16Sn24 + 212

82 Pb130
252
98 Cf154 4

7 44
16Sn28 + 208

82 Pb126
252
98 Cf154 10

8 46
18Ar28 + 206

80 Hg126
252
98 Cf154 6

9 50
18Ar32 + 206

80 Hg122
252
98 Cf154 14

10 78
30Zn48 + 174

68 Er106
252
98 Cf154 18

11 80
30Zn50 + 172

68 Er104
252
98 Cf154 18

12 98
38Sr60 +152

60 Nd92
252
98 Cf154 24

13 100
38 Sr62 +152

60 Nd92
252
98 Cf154 28

14 100
40 Zr60 +152

58 Ce94
252
98 Cf154 28

15 102
40 Zr62 +150

58 Ce92
252
98 Cf154 28

16 104
40 Zr64 +148

58 Ce90
252
98 Cf154 28

17 104
42 Mo62 +148

56 Ba92
252
98 Cf154 28

18 108
42 Mo66 +144

56 Ba88
252
98 Cf154 28

19 110
44 Ru66 +142

54 Xe88
252
98 Cf154 28

20 112
44 Ru68 +140

54 Xe86
252
98 Cf154 26

21 114
44 Ru70 +138

54 Xe84
252
98 Cf154 26

22 116
46 Pd70 +136

52 Te84
252
98 Cf154 26
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