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Abstract. This paper presents a brief description of the theory of invariant manifolds of
variable stability in the context of their connection with the theory of solutions that are bounded
on the whole axis. This approach allows various generalizations both to the case of increasing
of the dimension of the invariant manifolds and to the case of multiple change of their stability.
The sufficient conditions for the existence of an invariant manifold of variable stability are
revealed. The continuity condition for the invariant manifold yields the analytic representation
of the gluing function. The theoretical developments are illustrated by several examples.

1. Introduction
In this paper we outline an approach for constructing of invariant surfaces of variable stability. As
a one-dimensional example of such objects it is possible to consider a canard. The term “canard”
(or “duck-trajectory”) originally was introduced in the context of the van der Pol equation [1]–
[4], but later was investigated for other types of singularly perturbed systems including the ones
of higher dimensions, i.e. when the phase variables are vectors (see, for example, [5]–[10] and
the references therein).

From the viewpoint of the geometrical theory of singular perturbations a canard may be
considered as a result of gluing stable and unstable slow invariant manifolds at one point of the
breakdown surface due to the availability of an additional scalar parameter in the differential
system. This approach was first proposed in [11, 12] and was then applied in [7], [13]–[17].

Other example of invariant surfaces of variable stability may be a canard cascade [18, 19] which
is a result of gluing stable (attractive) and unstable (repulsive) slow invariant manifolds at several
points of the breakdown surface. For the possibility of this gluing an additional function of a
slow variable and several additional parameters are required. If we take an additional function
of a vector variable parameterizing the breakdown surface, we can glue the stable and unstable
slow invariant manifolds at all points of the breakdown surface simultaneously. As a result we
obtain the continuous stable/unstable invariant surface or black swan [8, 15, 19, 20, 21]. Such
surfaces may be considered as a multidimensional analogue of the notion of a canard.

Thus, the applying of a gluing function instead of a single gluing parameter may lead to
various types of the invariant surfaces of variable stability, some of which are discussed in this
paper.

From the perspective of analytic representation an invariant surface of variable stability
is closely connected to a bounded-on-the-whole-axis solution of the corresponding differential
system. Furthermore, the continuity condition for the invariant surface yields the analytic
representation of the gluing function.
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In this paper we consider an approach for constructing of invariant surfaces of variable
stability, which is based, on the one hand, on applying of a gluing function, and on the other
hand on the analytic representation of a bounded-on-the-whole-axis solution of the corresponding
differential system.

2. Theoretical Background
We briefly recall the basic definitions and notions concerning the invariant surfaces of variable
stability of singularly perturbed systems. The main object of our consideration is the
autonomous singularly perturbed system of the form

dx

dt
= f(x, y, α, ε), (1)

ε
dy

dt
= g(x, y, α, ε), (2)

where x and y are vectors in Euclidean spaces Rn and Rm, respectively, ε is a small positive
parameter, vector-functions f and g are sufficiently smooth and their values are comparable to
unity. The slow and fast subsystems are represented by (1) and (2), respectively.

The degenerate equation g(x, y, α, 0) = 0 describes a slow surface S (or slow curve in the case
of the scalar variable x). The subset Γ of S given by

det

∣∣∣∣
∂g

∂y
(x, y, α, 0)

∣∣∣∣ = 0 (3)

determines a breakdown surface (breakdown, turning or jump points in the scalar case) [19]. The
surface Γ divides S into foliations on which

det

∣∣∣∣
∂g

∂y
(x, y, α, 0)

∣∣∣∣ 6= 0.

By the implicit function theorem, a leaf of the slow surface is determined by a well-defined
vector-function: y = ϕ(x, α). A slow surface can consist of several foliations determined by
different functions y = ϕi(x, α), domains of which can intersect, depending on the structure of
the slow surface. It should be noted that the conditions of the implicit function theorem do not
hold on the leaf boundary given by (3).

The leaf Ss of the slow surface is stable (or attractive) if the spectrum of the Jacobian matrix

∂g

∂y
(x, ϕ(x, α), α, 0)

is located in the left open complex half-plane. If there is at least one eigenvalue of the Jacobian
matrix with a positive real part then the leaf of S, say Su, is unstable (or repulsive). The case
of complex eigenvalues is not considered in this paper.

In an ε–neighborhood of Ss (Su) there exists a stable (unstable) slow invariant manifold.
The slow invariant manifold is defined as an invariant surface of slow motions.

Definition 1 A smooth surface Sε in Rm × Rn is called an invariant manifold of the system
(1), (2) if any trajectory of the system that has at least one point in common with Sε lies entirely
on Sε.

The only invariant manifolds of system (1), (2) discussed here are those of dimension m (the
dimension of the slow variable x) that can be represented as graphs of vector-valued functions
y = h(x, α, ε) = ϕ(x, α)+O(ε), ε → 0. Here it is assumed that h(x, α, ε) is a sufficiently smooth
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Figure 1. The slow curve (thick
line) and the trajectories (thin
lines) of the van der Pol’s type
systems. The branches Ss

1 and Ss
3

of the slow curve are stable, the
branch Su

2 is unstable, J1 and J2

are the jump points.

function of ε. Such integral manifolds are called manifolds of slow motions — the origin of this
term lies in nonlinear mechanics.

The notions of (in)stability for slow invariant manifold become clear if we rescale the system
(1), (2) via the change of variables τ = t/ε. Hence we obtain the equivalent system

dx

dτ
= εf(x, y, α, ε), (4)

dy

dτ
= g(x, y, α, ε). (5)

For simplicity we consider the case when the variables x and y are scalar. The stable Ss

and unstable Su subsets of the slow curve S for which gy < 0 and gy > 0, respectively, are
separated by the jump point(s) at which gy = 0. When ε = 0 S consists of equilibrium points
of the system (4), (5) which are stable if gy < 0 and unstable if gy > 0. When ε > 0 and
sufficiently small, the manifold of equilibria is replaced by a boundary layer close to S with slow
dynamics. There is an attractive trajectory in the boundary layer close to the stable branch
Ss, the stable invariant manifold Ss

ε , and there is a repulsive trajectory close to an unstable
branch Su, the unstable invariant manifold Su

ε [22]. For example, the slow curve of the van der
Pol system is S-shaped. It is divided by two jump points, say J1 and J2, into two stable (Ss

1

and Ss
3) and one unstable (Su

2 ) branches, see Fig. 1. In the ε-neighborhood of the stable and
the unstable branches of the slow curve there exist the stable (Ss

1,ε and Ss
3,ε) and the unstable

(Su
2,ε) slow invariant manifolds, respectively. A trajectory on Ss

1,ε must leave it when the jump
point J1 is reached. After this moment two scenarios are possible depending on the value of the
control parameter α: the trajectory is either immediately repelled back to Ss

1,ε from Su
2,ε (if Ss

1,ε

is situated inside of Su
2,ε), or repelled to Ss

3,ε and makes a large excursion from the second jump
point before it can return to Ss

1,ε (if Ss
1,ε is situated outside of Su

2,ε). While in the first case the
limit cycles must be small, in the second case they are large and of relaxation type.

The presence of the additional scalar parameter α provides the possibility of gluing the stable
and unstable invariant manifolds at the jump point to form a single trajectory, the canard. The
term “canard” (or duck–trajectory) had been originally given by French mathematicians to the
intermediate periodic trajectories of the van der Pol equation between the small and the large
orbits due to their special shapes, see Fig. 2. However, in our work a canard is a one-dimensional
slow invariant manifold of variable stability.

Definition 2 Trajectories which at first move along the stable slow invariant manifold and
then continue for a while along the unstable slow invariant manifold are called canards or duck-
trajectories.

Definition 3 Trajectories which at first move along the unstable slow invariant manifold and
then continue for a while along the stable slow invariant manifold are called false canard
trajectories.
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Figure 2. Canard (thick line) and
the slow curve (thin line) of the van
der Pol’s type system.
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Figure 3. Global (the longest) and
local canards of (6). The arrows
show the direction of increasing
time, O is the turning point.

Therefore it is possible to consider a straight line as a basic model of a canard.

Example 1 As the simplest system with a canard we propose

ẋ = 1, εẏ = xy. (6)

Here g(x, y) = xy. It is clear that the trajectory y = 0 is a canard. The left part (x < 0) is
attractive since ∂g/∂y < 0 and the right part (x > 0) is repulsive. These two parts are divided
by a turning point O, which separates stable and unstable parts of the slow curve, at x = 0.

Note that y = 0 is global (the longest) canard and the unique bounded-on-the-whole-axis
solution of system (6). Others solutions of system (6) which are local canards, see Fig. 3, are
infinitely increasing (decreasing) as t →∞ or t → −∞.

Example 2 Some generalization of (6) is the system

ẋ = 1, εẏ = xy + φ(x, ε) + α,

the unique bounded-on-the-whole-axis solution of which has the representation

y =





1
ε

x∫

−∞
exp

(
x2 − s2

2ε

)
[φ(s, ε) + α] ds, x ≤ 0,

−1
ε

∞∫

x

exp

(
x2 − s2

2ε

)
[φ(s, ε) + α] ds, x > 0.

(7)

The “canard value” of the parameter α can be obtained from the continuity condition for (7) at
x = 0:

ε−1

∞∫

−∞
e−s2/2ε[φ(s, ε) + α] ds = 0

or

αφ = − 1√
2πε

∞∫

−∞
e−s2/2εφ(s, ε) ds.
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The proof for the existence of a maximum canard is based on considering a solution to the
corresponding differential system that is bounded on the whole axis. This technique canard
constructing is also applicable to further generalizations.

3. Canard as a unique bounded-on-the-whole-axis solution
Will apply the technique of canard constructing described in the previous section for the planar
system

ẋ = 1, εẏ = 2xy + F (x, y, α, ε), (8)

where
F (x, y, α, ε) = f(x, y) + εg(x, y, ε) + εα (1 + h(x, y, ε)) .

We assume that

(i) The functions f , g and h are sufficiently smooth in the domain

Ω = {x ∈ R, y ∈ R, α ∈ R, ε ∈ [0, ε0]} .

(ii) The functions f , g and h satisfy the following inequalities in the domain Ω

|f(x, y)| ≤ C|y|2, (9)

|g(x, y, ε)| ≤ Cµ, (10)

|h(x, y, ε)| ≤ Cµ, (11)

|f(x, y)− f(x, ȳ)| ≤ L

2
(|y|+ |ȳ|) |y − ȳ|, (12)

|g(x, y, ε)− g(x, ȳ, ε)| ≤ L|y − ȳ|, (13)

|h(x, y, ε)− h(x, ȳ, ε)| ≤ L|y − ȳ|, (14)

where C and L are the positive constants, µ is a sufficiently small positive constant.
Let us reduce the system (8) to the form

ε
dy

dx
= 2xy + F (x, y, α, ε). (15)

Due to (9) the straight line y = 0 is the slow curve of (15), the part of which with x < 0 (x > 0)
is stable (unstable). Our goal is to prove that for some value of the parameter α there exists a
one-dimensional invariant manifold of variable stability (a canard) located in a ε-neighborhood
of the slow curve y = 0.

We introduce the metric space Φ. Its elements are the scalar functions φ(x, ε), bounded by
the value

√
εqµ, i.e.

|φ(x, ε)| ≤ √
εqµ, (16)

and continuous in the domain

Ω1 = {x ∈ R, µ ∈ (0, µ0), ε ∈ (0, ε0)} .

Φ is a complete space with the metric

d(φ, φ̄) = sup
Ω1

∣∣φ(x, ε)− φ̄(x, ε)
∣∣ , ∀φ ∈ Φ, ∀φ̄ ∈ Φ.

On the space Φ we define an integral operator T by the formula
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T (φ)(x) =





1
ε

x∫

−∞
exp

(
x2 − s2

ε

)
F (s, φ(s, ε), αφ, ε)ds, x ≤ 0,

−1
ε

∞∫

x

exp

(
x2 − s2

ε

)
F (s, φ(s, ε), αφ, ε) ds, x > 0.

(17)

It should be noted that we use a modification of the usual technique of the integral manifold
theory [23, 24], and the operator in the upper (lower) line in (17) is usually used for proving the
existence of stable (unstable) invariant surfaces.

The continuity condition for T (φ)(x) at x = 0 defines the parameter value αφ corresponding
to the function φ(x, ε) and implies the equation

ε−1

∞∫

−∞
e−s2/εF (s, φ(s, ε), αφ, ε)ds = 0

or
αφ = −I1

I0
,

where

I1 =
1

ε
√

ε

∞∫

−∞
e−s2/ε [f (s, φ(s, ε)) + εg (s, φ(s, ε), ε)] ds,

I0 =
1√
ε

∞∫

−∞
e−s2/ε [1 + h (s, φ(s, ε), ε)] ds.

From (9), (10), (16) we obtain

|I1| ≤ 1
ε
√

ε

∞∫

−∞
e−s2/ε

∣∣∣Cεµ2q2 + εCµ
∣∣∣ ds =

√
πC(µ2q2 + µ),

and, taking into account (11), we get

|I0| ≥ 1√
ε

∞∫

−∞
e−s2/ε (1− Cµ) ds =

√
π(1− Cµ).

The last two inequalities yield the estimate

|αφ| ≤ Cµ(µ2q2 + 1)
1− Cµ

. (18)

It is clear that the operator T (φ)(x) satisfies the equation

ε
dT (φ)

dx
= 2xT (φ) + F (x, φ(x, ε), αφ, ε).

Hence, the existence problem of the canard reduces to the existence problem of the solution of
the operator equation T (φ) = φ.
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In accordance with (16) to check that the operator T (φ) transforms the complete metric
space Φ into itself it is sufficiently to verify that

|T (φ)(x)| ≤ √
εqµ (19)

for all φ ∈ Φ. Applying (9)–(11) and (18) and taking into account the estimate

∞∫

x

exp

(
x2 − s2

ε

)
ds <

√
π

2
√

ε, x > 0,

we get

|T (φ)(x)| ≤ √
ε

√
π

2
Cµ

(
µq2 + 1 +

1 + µq2

1− Cµ

)
.

The similar inequality is obtained for x < 0.
The numbers µ and q will be chosen to obtain the following inequality

√
π

2
C

(
µq2 + 1 +

1 + µq2

1− Cµ

)
≤ q, (20)

which means that (19) is fulfilled.
For any φ, φ̄ ∈ Φ from (9)–(14) and (18) we obtain

d

(
T (φ), T (φ̄)

)
≤
√

π

2

[
Lµq + L

√
ε +

CµL
√

ε(1 + µq2)
1− Cµ

]
d(φ, φ̄).

The numbers ε0, µ and q will be chosen to obtain both (20) and the inequality

√
π

2

[
Lµq + L

√
ε +

CµL
√

ε(1 + µq2)
1− Cµ

]
< 1

for sufficiently small ε (0 < ε ≤ ε0). In this case the contracting operator T (p) transforms the
complete metric space Φ into itself. Hence, due the Banach Contraction Principle the operator
T has a unique fixed point φ(x, ε) ∈ Φ corresponding to the canard of (15).

The above argument permits us to formulate the following statement.

Theorem 1 Let the conditions (i),(ii) hold. Then there are numbers ε0 > 0, q and µ such that,
for all ε ∈ (0, ε0), there exist α = αφ and φ(x, ε) ∈ Φ such that y = φ(x, ε) is a canard of (8).

Remark 1 Usually the conditions (9)–(14) are fulfilled for |x| ≤ r1, ‖y‖ ≤ r2 only. In this case
we deal with a local canard.

Note that the problem of the extendability of a local canard (or local invariant manifolds of
variable stability) is important and complicated but requires a separate study which is beyond
the scope of this paper.

Example 3 Originally the existence of canards for the van der Pol system

dx

dt
= y − α, (21)

ε
dy

dt
= y − y3/3− x (22)
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has been proven by the non-standard analysis methods [1, 2, 4]. We show that this statement
also follows from the Theorem 1.

The change of variables

x = x1 − 2
3
, y = y1 − 1, α = −1 + εa,

transforms (21), (22) to the form
ẋ1 = y1 − εa,

εẏ1 = −x1 + y2
1 −

1
3
y3
1.

Applying a rectifying transformation

εz = −x1 + y2
1 −

1
3
y3
1 +

ε

y1 − 2

and eliminating the variable t we obtain

ε
dz

dy1
=

y1(y1 − 2)2z
1− z(y1 − 2)

− ε

(y1 − 2)2
− εa(y1 − 2)

1− z(y1 − 2)
.

By the next change of the parameter a = 1/8 + a1 we get

ε
dz

dy1
= y1(y1 − 2)2z

[
1 + z(y1 − 2) +

z2(y1 − 2)2

1− z(y1 − 2)

]

−ε

[
1

(y1 − 2)2
+

y1 − 2
8− 8z(y1 − 2)

]
− εa1

y1 − 2
1− z(y1 − 2)

,

or, finally,

ε
dz

dy1
= 4y1z + 4y2

1

(
y1

4
− 1

)
z + y1(y1 − 2)3

z2

1− z(y1 − 2)

−ε

[
1

(y1 − 2)2
+

y1 − 2
8− 8z(y1 − 2)

]
− εa1

y1 − 2
1− z(y1 − 2)

. (23)

It easy to see that (23) has the form of equation (8) and the conditions of the Theorem 1
are fulfilled in some neighborhood of y1 = 0, outside of which the functions f , g, h should be
extended with preservation of the properties (9)–(14).

The existence theorem for the canards can be extended to the case of vector variables x and
y [7, 25] and can be obtained as a corollary of the existence theorem for the black swans, see
Subsection 4.3.

4. Further generalizations
The described method for constructing of the invariant surfaces of variable stability in the form
of bounded-on-the-whole-axis solutions of corresponding differential systems assumes various
generalizations, some of which are discussed in this section. A distinctive feature in these cases
lies in replacing a single gluing parameter with a gluing function to ensure continuity of the
invariant surface.
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4.1. Case of a multiple turning point
In this Subsection we deal with a multiple turning point.

Example 4 Consider a modification of the Example 1 given by

ẋ = 1, εẏ = xky,

or
ε
dy

dx
= xky. (24)

For k = 3, 5, . . . the straight line y = 0 is a canard.

Example 5 Some generalization of (24) is the equation

ε
dy

dx
= xky + f(x, y, α).

In this case the gluing function can be found in the form

α = α(x, ε) = α1(ε)xk−1 + . . . + αk−1(ε)x + αk(ε).

The other approach for investigation of canards in the case of a multiple turning point has been
proposed in [26].

4.2. Canard cascades
If it is necessary to glue stable and unstable slow invariant manifolds at several breakdown points,
we need several additional parameters and as a result we obtain a slow invariant manifold with
multiple change of stability (a canard cascade).

Definition 4 The continuous one-dimensional slow invariant manifold of (1), (2) which
contains at least two canards or false canards is called a canard cascade.

In the case of a planar system, if we take an additional function whose arguments are a vector
parameter and a slow variable, we can glue the stable (attractive) and unstable (repulsive) slow
invariant manifolds at all breakdown points at the same time. The outcome of this procedure
is a canard cascade.

Example 6 The differential system

ẋ = 1, εẏ = x(x− 1)y

gives a simplest canard cascade y = 0 which consists of two repulsive parts (x < 0 and x > 1
since ∂g/∂y = x(x − 1) > 0) and one attractive part (0 < x < 1 since ∂g/∂y = x(x − 1) < 0)
with two breakdown points x = 0 and x = 1.

Example 7 An example of a system with an infinite number of breakdown points is

ẋ = 1, εẏ = y sinx.

Example 8 The slow curve of the van der Pol system (21), (22) has two jump points. To
construct a canard cascade we need to have two independent parameters. We can consider α
as a gluing function α = α(x, λ) depending on the slow variable x and the vector λ = (λ1, λ2).
The vector λ is a function of ε: λ = λ(ε). The consideration of a variant where the function
α is a polynomial in x, i.e., α = λ1x + λ2 seems quite natural. Of course, we can use a
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Figure 4. Slow curve (thin dashed
line) and canard cascade (thick full
line) in the case of the van der
Pol equation. J1 and J2 are jump
points where stable and unstable
slow invariant manifolds are glued.

trigonometric polynomial or the linear combination of any linearly independent functions in x
with the coefficients λ1, λ2. We will search the canard cascade in the form of a polynomial

x = y − y3/3 + εqm(y, ε), (25)

where qm(y, ε) is an mth-degree polynomial in y. From (21), (22) and (25) we have

∂

∂y

(
y − y3/3 + εqm(y, ε)

)
(−qm(y, ε)) = y − α.

Balancing the degrees of polynomials on both sides of this equality implies that m = 1 since the
highest power of y in x is y3, and therefore, qm(y, ε) = ay + b. After some calculations we obtain
[18, 19] the representation for gluing function

α = α(x, ε) = 3µ(ε)x,

where
µ(ε) = (

√
1 + 2ε− 1)/2ε,

and a canard cascade
x = y − y3/3 + εµ(ε)y.

Figure 4 shows that the canard cascade (the one-dimensional slow invariant manifold) passes
near the slow curve of the system. We glue the stable and the unstable slow invariant manifolds
at two jump points J1 and J2. In this case we have used only one additional parameter to obtain
a canard cascade.

Note that the change of variable

x = −εz + y − y3/3 + εµ(ε)y

transforms (21), (22) to the system

ẏ = z − µy, εż = (y − 1)(y + 1)z − 4εµz

with the canard cascade z = 0 which plays the role of a bounded-on-the-whole-axis solution.

In the general case, when the slow curve of a system has k jump points, it is necessary to use
k additional parameters to construct a canard cascade.
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4.3. Black swans
We return now to the more general case and consider the multidimensional invariant surfaces of
variable stability or black swans [20, 21]. These surfaces are considered as natural generalizations
of the notion of a canard.

We consider a non-autonomous system obtained from an original autonomous system of type
(1), (2) with a scalar fast variable by eliminating the variable t. It is assumed that this system
can be represented as:

dy

dx
= Y (x, y, z, ε), y ∈ Rn, x ∈ R; (26)

ε
dz

dx
= 2xz + a + Z(x, y, z, a, ε), |z| ≤ r, (27)

where r and a0 are positive constants. It is supposed that the functions Y, Z are continuous and
satisfy the following inequalities for x ∈ R, y ∈ Rn, |z| ≤ r, |a| ≤ a0, ε ∈ [0, ε0]:

‖Y (x, y, z, ε)‖ ≤ k, |Z(x, y, z, a, ε)| ≤ M
(
ε2 + ε|z|+ |z|2

)
, (28)

‖Y (x, y, z, ε)− Y (x, ȳ, z̄, ε)‖ ≤ M(‖y − ȳ‖+ |z − z̄|), (29)

|Z(x, y, z, a, ε)− Z(x, ȳ, z̄, ā, ε)| ≤ M {(ε + |z̃|)|z − z̄|
+(ε2 + ε|z̃|+ |z̃|2)‖y − ȳ‖+ ε|a− ā|

}
, |z̃| = max{|z|, |z̄|}, (30)

where ‖ · ‖ denotes the usual norm in Rn and | · | denotes the absolute value of a scalar, k and
M are positive constants.

We take a as a function: a = a(y, ε).
Let F be the complete metric space of functions a(y, ε) continuous with respect to y and

satisfying
|a(y, ε)| ≤ ε2K, |a(y, ε)− a(ȳ, ε)| ≤ ε2L‖y − ȳ‖,

for ε ∈ (0, ε0], where K and L are positive constants, with the metric defined by

ρ(a, ā) = sup
y∈Rn

|a(y, ε)− ā(y, ε)|.

Let H be the complete metric space of functions h(x, y, ε) mapping R×Rn to R continuous
with respect to x, y and satisfying

|h(x, y, ε)| ≤ ε
3
2 q,

|h(x, y, ε)− h(x, ȳ, ε)| ≤ ε
3
2 δ‖y − ȳ‖,

for ε ∈ (0, ε0], where q and δ are positive constants, with the metric

ρ(h, h̄) = sup
x∈R,y∈Rn

|h(x, y, ε)− h̄(x, y, ε)|.

On the space H we define an operator T by the formula

Th(x, y, ε) =





1
ε

x∫

−∞
exp

(
x2 − s2

ε

)
[Z(·) + a(ϕ(s, x), ε)] ds, x ≤ 0,

−1
ε

∞∫

x

exp

(
x2 − s2

ε

)
[Z(·) + a(ϕ(s, x), ε)] ds, x > 0,
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where Z(·) = Z(s, ϕ(s, x), h(s, ϕ(s, x), ε), a(ϕ(s, x), ε), ε), and ϕ(s, x) is defined as follows. For
any element h ∈ H the initial value problem

dϕ

ds
= Y (s, ϕ, h(s, ϕ, ε), ε),

ϕ(x) = y,

is considered. This problem is obtained from (26) if we replace z by an element h ∈ H. The
solution of this problem is denoted by Φ(s, x, y, ε|h) = ϕ(s, x). When the operator T possesses
a fixed point h(x, y, ε) in H then the surface z = h(x, y, ε) is a slow stable/unstable invariant
manifold (a black swan). It should be noted that the operator T defines a manifold of the
solutions which are bounded with respect to z.

For the detailed proof, which is multidimensional modification of the proof of the Theorem
1, the readers are referred to [20, 21, 25]. The following theorem gives sufficient conditions for
the system (26), (27) to have a black swan.

Theorem 2 Let the conditions (28)–(30) be satisfied. Then there are numbers ε0 > 0 and
K, L, q, δ such that, for all ε ∈ (0, ε0), there exist functions a(y, ε) ∈ F and h(x, y, ε) ∈ H such
that z = h(x, y, ε) is a slow integral manifold (the black swan).

Remark 2 A original singularly perturbed differential system can be reduced to the form (26),
(27) by an multidimensional analogue of the rectifying transformation described in the Example
3 (see, for instance, [7, 25]).

Remark 3 Usually the conditions (28)–(30) are fulfilled for |x| ≤ r1, ‖y‖ ≤ r2 only. Integral
manifolds in this case are local.

Note that Theorem 2 can be generalized to the case when z is a vector variable.
Let us consider now the system

dy

dx
= Y (x, y, z1, z2, ε), y ∈ Rn, x ∈ R, (31)

ε
dz1

dx
= 2xz1 + a(y, ε) + Z1(x, y, z1, z2, ε), z1 ∈ R, (32)

ε
dz2

dx
= A(x)z2 + a(y, ε)B + Z2(x, y, z1, z2, ε), z2 ∈ Rm, (33)

where A(x) is a bounded matrix, satisfying a Lipschitz condition, with eigenvalues λi(x):

Reλi(x) ≤ −2β < 0 (i = 1, 2, . . . , m),

B is a constant vector, the continuous functions Y , Z1, Z2, a satisfy the inequalities

‖Y (x, y, z1, z2, ε)‖ ≤ k, (34)

|Z1(x, y, z1, z2, ε)| ≤ M
(
ε2 + ε‖z‖+ ‖z‖2

)
, (35)

‖Z2(x, y, z1, z2, ε)‖ ≤ M
(
ε2 + ε‖z‖+ ‖z‖2

)
, (36)

‖Y (x, y, z1, z2, ε)− Y (x, ȳ, z̄1, z̄2, ε)‖ ≤ M(‖y − ȳ‖+ ‖z − z̄‖), (37)

|Z1(x, y, z1, z2, ε)− Z1(x, ȳ, z̄1, z̄2, ε)| ≤ M {(ε + ‖z̃‖)‖z − z̄‖
+(ε2 + ε‖z̃‖+ ‖z̃‖2)‖y − ȳ‖

}
, (38)
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‖Z2(x, y, z1, z2, ε)− Z2(x, ȳ, z̄1, z̄2, ε)‖ ≤ M {(ε + ‖z̃‖)‖z − z̄‖
+(ε2 + ε‖z̃‖+ ‖z̃‖2)‖y − ȳ‖

}
, (39)

where

z =
(

z1

z2

)
, z̄ =

(
z̄1

z̄2

)
, ‖z̃‖ = max{‖z‖, ‖z̄‖}, k > 0,M > 0.

We consider a(y, ε) to be a continuous function satisfying the inequalities

|a(y, ε)| ≤ ε2K, |a(y, ε)− a(ȳ, ε)| ≤ ε2L‖y − ȳ‖, (40)

for ε ∈ (0, ε0] with some positive constants K and L.

Theorem 3 Let the conditions (34)–(39) be satisfied. Then there are numbers ε0 > 0 and
K, L, q, δ such that, for all ε ∈ (0, ε0), there exist functions a(y, ε) satisfying (40) and a
continuous function h(x, y, ε) satisfying

|h1(x, y, ε)| ≤ ε3/2q, |h1(x, y, ε)− h1(x, ȳ, ε)| ≤ ε3/2δ‖y − ȳ‖, (41)

‖h2(x, y, ε)‖ ≤ ε2q, ‖h2(x, y, ε)− h2(x, ȳ, ε)‖ ≤ ε2δ‖y − ȳ‖, (42)

h(x, y, ε) =
(

h1(x, y, ε)
h2(x, y, ε)

)
, h1 ∈ R, h2 ∈ Rm,

such that z = h(x, y, ε) is a black swan of the system (31)–(33).

The proof of Theorem 3 follows the lines of the proof of Theorem 2, but now H is the complete
metric space of functions h(x, y, ε) mapping R × Rn to Rm+1, continuous with respect to x, y

and satisfying (41), (42) for ε ∈ (0, ε0]. The operator T is defined by the formula T =
(

T1

T2

)
:

T1h(x, y) =





−ε−1
∞∫
x

e(x2−s2)/ε[Z1(·) + a(ϕ(s, x), ε)]ds , x ≥ 0,

ε−1
x∫

−∞
e(x2−s2)/ε[Z1(·) + a(ϕ(s, x), ε)]ds , x < 0,

T2h(x, y) = ε−1

x∫

−∞
W (x, s, ε)[Z2(·) + Ba(ϕ(s, x), ε)]ds,

where
Z1,2(·) = Z1,2(s, ϕ(s, x), h1(s, ϕ(s, x), ε), h2(s, ϕ(s, x), ε), ε)

and W (x, s, ε), W (s, s, ε) = I, is the fundamental matrix of the equation

ε
dz2

dx
= A(x)z2.

Remark 4 The proof of the Theorem 3 can be extended to the case when the system (31)–(33)
has the form

dy

dx
= Y (x, y, z1, z2, ε), y ∈ Rn, x ∈ R, (43)

ε
dz1

dx
= 2xb(x, y)z1 + a(y, ε) + Z1(x, y, z1, z2, ε), z1 ∈ R, (44)

ε
dz2

dx
= A(x, y)z2 + a(y, ε)B(x, y, ε) + Z2(x, y, z1, z2, ε), z2 ∈ Rm. (45)

Here the matrix A(x, y) and the functions Y , Z1, Z2, and a satisfy the conditions of the Theorem
3. Moreover, the matrix A(x, y), the scalar function b(x, y) (0 < c1 ≤ b(x, y) ≤ c2) and the
vector function B(x, y, ε) are continuous and bounded, and satisfy a Lipschitz condition.
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Remark 5 The existence of canards for the systems (31)–(33) and (43)–(45) follows from the
Theorem 3. Indeed, the black swan z = h(x, y, ε) can be considered as a surface consisting
entirely of the canards, each of which passes through a certain point of the breakdown surface.
If we take the gluing function has to be a constant, a(y, ε) = a(y0, ε), the stable and unstable
invariant manifolds can be glued at one point y = y0 of the breakdown surface only. The canard
passes only through this point.

5. Summary
In this paper we have looked from unified positions at the invariant surfaces of variable stability
both from a geometric viewpoint, when dealing with gluing the stable and the unstable slow
invariant manifolds, and in terms of their analytic representations as the unique bounded-on-
the-whole-axis solutions. The invariant surfaces of variable stability are interesting not only
from a mathematical viewpoint, they are successfully used for modeling of critical phenomena
of diverse nature. It should be noted that the considered cases do not exhaust the possible
generalizations.
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