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Abstract. Frictional hysteresis at relative motion in the pre-sliding range is considered. This
effect is characterized by an elasto-plastic interaction, and that on the micro-scale, between two
rubbing surfaces in contact that gives rise to nonlinear friction force. The pre-sliding friction
force yields hysteresis in displacement. In this study, the damping characteristics of frictional
hysteresis are analyzed. It is worth noting that we exclude the viscous damping mechanisms
and focus on the pure hysteresis damping to be accounted in the friction modeling. The general
properties of pre-sliding friction hysteresis are demonstrated and then compared with the limit
case of discontinuous Coulomb friction. Further we consider two advanced dynamic friction
models, LuGre and Maxwell-slip, so as demonstrate their damping properties and convergence
of the motion system to equilibrium state. Experimental observations of the free motion in
pre-sliding range are also shown and discussed.

1. Introducing remarks
The frictional hysteresis in pre-sliding range is one of the least understood phenomena of kinetic
friction in mechanical systems. It should be stressed that besides a physics-based tribological
study of friction effects (see e.g. [1]), the latter can be equally investigated from the system and
control point of view, thus operating with the scalar force and velocity. The earlier works on
modeling, analysis, and control methods of friction in machines (see the survey [2] and references
therein) already emphasized the significance of pre-sliding friction range and related hysteresis
in displacement. The convergence of (PID) controlled motion with Coulomb and static friction
and possible appearance of the limit cycles has been studied in [3]. Later, the friction-induced
limit cycles have been described and demonstrated in [4] for static and dynamic (LuGre) friction
models. Recently the convergence of a feedback-controlled motion has been analyzed in context
of pre-sliding hysteresis and evaluated experimentally in [5]. A theoretical analysis of pre-sliding
frictional hysteresis acting as a feedback to the moving mass can be found in [6]. The pre-sliding
behavior of several state-of-the-art dynamic friction models has been classified and compared in
terms of the proposed common metrics (so-called Z-properties chart) in [7]. Further it is worth
noting that the system-oriented dynamic friction modeling undergos continuous advancements
and refinements which are related to the novel experimental observations on the one hand, and
model applicability in control practice on the other hand, see e.g. [1, 8, 9].
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In this paper, we analyze the damping characteristics of frictional hysteresis in pre-sliding
range and investigate the generic force-displacement hysteresis properties in a vicinity to
equilibrium of the free motion after an initial steady-state. Here it is worth noting that the
end of a free motion due to nonlinear hysteresis is connatural to an unforced behavior of elastic-
plastic oscillators. The earlier works in that direction have been also reported e.g. in [10, 11, 12].

2. General consideration
We start our analysis by considering the unforced one-degree-of-freedom relative motion subject
to the Coulomb friction. For the sake of simplicity and without loss of generality we assume
a unity mass and unity Coulomb friction coefficient, so that the relative motion in (y, ẏ)-
coordinates can be described by the following differential equation

ÿ = −sign(ẏ) . (1)

Introducing the vector field

f(x) =

(
x2

−sign(x2)

)
with x = (x1, x2)

T ∈ R2 (2)

we obtain the state-space representation of system (1) as(
ẋ1
ẋ2

)
=

(
x2

−sign(x2)

)
, (3)

which is in relative displacement-velocity coordinates. Since the vector field does not depend on
the relative displacement we consider the single-variate Lyapunov function V (x2) = 1/2x22 which
constitutes kinetic energy of the moving mass. For the time derivative of Lyapunov function
d/dtV (x) = ∇V (x)f(x) one easily obtains

d

dt
V (x2) = −|x2|, (4)

which implies that

∀ x2 ̸= 0
d

dt
V (x2) < 0.

Since V (x2) is radially unbounded, the inequality above proves the global system stability in
Lyapunov sense, and one can conclude that any unforced motion trajectory, i.e. starting at any
point {x : x2 ̸= 0}, will approach the equilibrium set E = {x ∈ R2 : x2 = 0} in finite time. For
equilibrium set E at zero velocity, which is a discontinuity manifold due to the sign-operator of
Coulomb friction, we proceed similar to [13] by applying the invariance principle, also known as
LaSalle’s invariance principle (see e.g. [14] for details). The discontinuity manifold E divides the
total phase plane P into two regions P+ = {x ∈ R2 : x2 > 0} and P− = {x ∈ R2 : x2 < 0}. At
each discontinuity point xe ∈ E the vector field is oriented in opposite directions and is normal
to the x1-axis that follows from

f+(xe) = lim
x→xe,x∈P+

f(x) =

(
0
−1

)
, (5)

f−(xe) = lim
x→xe,x∈P−

f(x) =

(
0
+1

)
. (6)

Therefore, it can be concluded that once a trajectory reaches the x1-axis it stays there forever.
This is a significant issue since it shows that the Coulomb friction does not only provide a
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constant damping rate at unidirectional motion, i.e. according to |ÿ| = const, but equally
ensures an equilibrium state once reaching zero velocity.

Now, we are to analyze the friction hysteresis in displacement which is known to occur within
a micro-displacement range, often denoted as pre-sliding range or pre-sliding region, each time
the motion direction changes. Assuming the total friction force at an unidirectional steady-state
motion is captured by the Coulomb friction1 F = sign(ẏ)C, where C > 0 is the Coulomb friction
coefficient, we focus on the friction force transitions in a vicinity to motion reversals. Consider
the friction trajectories in the force-displacement coordinates as depicted in Figure 1. Let us
discuss in details and compare with each other three principally different reversal transitions as
these are sketched in the figure.
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Figure 1. Friction-displacement curves
after a motion reversal. The case of
elastic contacts with linear stiffness is
denoted by Ky, of hysteresis transition
by h(y), and the limit case of Coulomb
friction is denoted by sign(ẏ). The
shaded and scratch-through areas, Alin

and Ahys correspondingly, represent the
energy recuperated at motion reversal in
the linear and hysteresis case.

The first reversal transition, denoted by Ky, represents a purely elastic case with linear
stiffness K of frictional contacts. It should be noted that the combination of steady-state
Coulomb friction and Ky reversal transitions yields the behavior of classical Maxwell-slip
element, as it will be addressed in details in Section 3.2 when discussing the Maxwell-slip friction
model. Recall that in the transition characteristics the Maxwell-slip element coincides with the
stop-type Prandtl-Ishlinskii operator. For more details on the latter we refer to e.g. [15], [16].

The next reversal transition, denoted by h(y), is of hysteresis type. Without assuming a
particular analytical form, the h(y) function can be imposed on the certain (general) properties
which should be fulfilled in order to map the pre-sliding hysteresis friction:

(a) the function h(y) is defined on the interval [yr, yr +sign(ẏ)s] where yr is the recent reversal
point and s > 0 is a finite constant characterizing the recent pre-sliding range;

(b) the function h(y) is monotonically non-decreasing and continuously differentiable (at least
once);

(c) the function dh(y)/dy is non-negative and monotonically non-decreasing if ẏ < 0 and non-
increasing if ẏ > 0. This yields h(y) convex for ẏ < 0 and concave for ẏ > 0;

(d) the function h(y) is bounded by max
∣∣h(y)∣∣ = C;

(e) at the domain boundary y = yr+sign(ẏ)s the function dh(y)/dy = 0, i.e. h(y) is saturated.

Corollary, the properties (d) and (e) imply that after a pre-sliding range the friction force reaches
the Coulomb friction level and remains on that until next motion reversal.

The last reversal transition, denoted in Figure 1 by sign(ẏ), corresponds to the Coulomb
friction behavior, where the friction force changes stepwise at each motion reversal. This
represents a limit case for hysteresis transition when s → 0. It can be seen that the h(y)
transition passes into the sign(ẏ) one when allowing s = 0.

1 As stated in the Introduction part, the recent work is concerned only with the hysteresis damping characteristics
of pre-sliding friction. Therefore, the total friction force F considered here does not include the viscous, Stribeck,
and transient (dynamic) effects of kinetic friction.
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We are now in a position to analyze the damping characteristics of each reversal transition as
in Figure 1. For this purpose consider the unforced motion of a unity mass. The concentrated
(point) mass is in contact with a homogenous fixed horizontal surface, so that the assumed
one-degree-of-freedom motion is antagonized by the tangential friction force F , thus yielding

ÿ = −F (ẏ) . (7)

The case where the total friction force is Coulomb (see eq.(1)) has been already analyzed above,
turning out that the damping rate is constant until the abrupt stop, which occurs once reaching
zero velocity. Henceforth, let us consider the energy balance at motion reversal for two residual
transition cases, i.e. linear case denoted by Ky and hysteresis case denoted by h(y). Note that
the recent reversal where the sign(ẏ) changes from “+” to “−” is identical to that from “−”
to “+” due to the symmetry. Thus, we discuss the situation as illustrated in Figure 1 without
loss of generality. Further, we denote the relative position where the corresponding force curve
crosses the y-axis by y0.

At a motion reversal, the kinetic energy is zero due to ẏ = 0. However, in case of a linear
transition the potential energy Wlin = 1/2K(yr − y0)

2 is stored due to elastic contacts with
stiffness K. It means that when moving back from yr to y0, i.e. after a motion reversal, the
total amount of energy is recuperated that corresponds to the area Alin indicated in Figure 1.
That allows the system continuing to move into the same direction after crossing zero force, while
the magnitude of counteracting friction force will increase according to F = K(y − y0). Since
y0 = const for each particular reversal at yr, we introduce the local motion variable z = y − y0
with z̈ = ÿ and obtain the system dynamics at reversal transitions as

z̈ = −Kz . (8)

It is easy to recognize that (8) constitutes an undamped harmonic oscillator for which we have
an explicit time-domain solution given by

z(t) = Z0 cos(ωt) with Z0 = yr − y0 and ω =
√
K . (9)

Important to note is that once launched at Z0, the friction force oscillator will operate between
±Z0 without passing again to the Coulomb friction state. This is due to the relative motion is
unforced. The motion trajectories in the (y, ẏ)-plane result in the closed elliptic orbits whose
axes depend on the initial state Z0 and physical parameters, i.e. stiffness and mass. Thus it can
be concluded that a purely elastic reversal transition does not provide an asymptotic equilibrium
state after reaching zero velocity and, instead of this, induces a stable (linear) limit cycle. This
result will be reawakened in Section 3.2 when analyzing damping of the Maxwell-slip friction
model.

In case of a hysteresis reversal transition, similar consideration of potential energy stored
at a motion reversal can be done, however, with the total amount of recuperated energy
Whys = Ahys < Alin, as obvious from Figure 1. Since the force transition is given by the
nonlinear function h(y), the energy balance is determined by Whys(y) =

∫ y
yr
h(y)dy and that

until the next motion reversal. In order to provide an analytical solution in the phase-plane we
rewrite the system dynamics (7) by using ÿ = ẏdẏ/dy and obtain

ẏdẏ = −h(y)dy . (10)

Integrating (10) with respect to the motion interval, i.e. from yr to y, yields∫ y

yr

h(y)dy = −1

2
ẏ2
∣∣∣ẏ
ẏr

. (11)
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Since the velocity sign is a-priori given and the system dynamics (10) is defined between two
consecutive motion reversals with ẏr = 0 we can calculate the velocity function as

ẏ(y) = sign(ẏ)

√
2

∫ y

yr

h(y)dy . (12)

Inspecting (12) and with respect to the h(y)-properties (a)–(e) two significant implications can
be drawn.

(i) Since
∣∣∫ y

yr
h(y)dy

∣∣ is growing on the interval [yr, y0) and reducing afterwards, the max |ẏ|
value occurs at the y0 position, i.e. at zero-crossing of friction force. That is the (y0, max |ẏ|)
state subdivides each hysteresis transition into an acceleration and deceleration phase.

(ii) At the next motion reversal y+r which occurs after the relative velocity becomes again
zero ẏ+r = 0, according to (12), the magnitude of friction force decreases comparing to that of
previous reversal, i.e.

∣∣h(y+r )∣∣ < ∣∣h(yr)∣∣. This follows from the property (c) of hysteresis function
h(y) and implies that the potential energy, which can be recuperated after next motion reversal,
is lower than that after the previous motion reversal, i.e. Whys(y

+
r ) < Whys(yr).

From implication (ii) it can be concluded that each hysteresis transition dissipates the energy
and the motion system (7) attains a stable equilibrium state (yir, ẏ

i
r = 0) at the finite number of

reversals i > 1. As corollary, we can note that the equilibrium state lies always between the first
and second reversal point, i.e. min(y∞r , y∈r ) ≤ yir ≤ max(y∞r , y∈r ). Further, it is worth noting
that at the reached equilibrium state the residual (stiction) friction force is not necessarily zero
and can comply with 0 ≤ |F (ẏir = 0)| < C. This corresponds to adhesion mechanisms of the
static (stiction) friction and is out of scope in the recent study. The single explanation, to be
given here, on non-zero friction at the reached motion equilibrium is that it can be considered
as a Coulomb-like friction behavior where F (ẏir) = sign(ẏ)c with 0 < c < C. This ensures
the system remains sticking in the attained equilibrium even if F ̸= 0, as has been analyzed
at the beginning of this Section. Further we note that reaching a stable equilibrium at i = 1
corresponds to the Coulomb friction transition sign(ẏ) which has been analyzed beforehand.

For the analysis accomplished above we are to demonstrate the unforced motion trajectories,
and that for all three reversal transitions. The results are obtained by means of a numerical
simulation. For the sake of simplicity we assume the unity mass, unity linear stiffness, and unity
Coulomb friction coefficient. In case of hysteresis reversal transition we apply the LuGre friction
model, addressed further in Section 3.1. The unforced motion trajectories with an initial state
(y, ẏ)(0) = (0, 5) are shown in the phase-plane in Figure 2 for all three cases. It can be seen that
the trajectories confirm the analysis made above.

0 0.01 0.02 0.03

−2

0

2

4

y (−)

dy
/d

t (
−

)

 

 

Ky
h(y)
sign(dy/dt)

Figure 2. Unforced motion trajectories
starting from an initial state (y, ẏ)(0) =
(0, 5). The Coulomb reversal transition
provides a stable convergence without
transient oscillations. The linear reversal
transition results in a stable limit cycle
within pre-sliding range. The hysteresis
reversal transition yields the nonlinearly-
damped (oscillating) transient towards a
stable equilibrium.
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3. Hysteresis damping in friction models
In this Section we consider two advanced dynamic friction models, i.e. LuGre and Maxwell-
slip, and analyze their damping characteristics when mapping the pre-sliding friction range.
The selection of friction models for analysis is not influenced by any particular preference and
solely bases on their quite different formulation and widespread use in structural mechanics
and control. The LuGre model [17], which is most widespread in control, extends the Dahl2

model (see [18], [19] for details) by including the damping of internal (pre-sliding) friction state
and allowing for more complex, than only Coulomb, steady-state friction characteristics, i.e.
the so-called Stribeck effect. The LuGre friction model incorporates also the viscous friction
term which is, however, omitted in the recent study since we are only focusing on the damping
characteristics of hysteresis. The Maxwell-slip model, or more generally Maxwell-slip structure,
is suitable for describing any rate-independent hysteresis between the generalized motion and
forces, see e.g. [20] for details. The approach was equally used for modeling the hysteresis
behavior of materials and structures in [21], and in particular of piezoelectric stacks in [22]. It
should be stressed that the parallel connection of single elasto-slip Maxwell elements renders
a structure which replicates the Prandtl-Ishlinskii stop-type hysteresis model, see e.g. [15] for
details. In the following Subsections, each friction model is briefly summarized for convenience
of the reader. Afterwards, the analysis of damping behavior in vicinity to an equilibrium, i.e.
motion stop, is performed for each model when incorporated in the system dynamics (7).

3.1. LuGre model
The LuGre friction model captures the total tangential friction force

F (ẏ) = σ0z + σ1ż + σ2ẏ (13)

as a linear combination of internal friction state z, its damping, and viscous friction term which
depends on the relative velocity. The positive parameters σ0 and σ1 can be understood as
the contact stiffness and micro-damping correspondingly. The non-negative viscous friction
coefficient is σ2. Often, the internal state z is associated with the so-called ‘bristle’ (or also
‘brush’) model of frictional interaction of asperities which form the contacting surfaces, as
schematically shown in Figure 3 (cf. with [23], [17]). A large number of bristles (with a rather
statistical distribution and thus average lengths and distances) deflect like the springs (not
necessarily linear) at a relative motion. Thus, the internal state z can be seen as an average
deflection of the bristles until a steady motion sets on.

F

y 

z!

Figure 3. Schematic representation of
two sliding surfaces in contact by means
of so-called bristle (also brush) friction
model. The tangential friction force F
acts in opposite direction to the relative
motion ẏ. The internal friction state z is
associated with an average deflection of
bristles.

2 The Dahl model was, probably, the first trial to extend the Coulomb friction law so as to resolve the discontinuity
at motion reversals. The Dahl model introduced an internal state to describe the reversal transition of friction
force, thus capturing the pre-sliding hysteresis. The model was long time a standard approach in the aero-space
industry to describe friction behavior in the ball-bearing type mechanisms.
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The internal friction state is governed by

ż = ẏ − σ0
|ẏ|
g(ẏ)

z, (14)

where the positive nonlinear static map g(·) captures the Coulomb friction and Stribeck effect.
In the following, however, we consider g = C only so as to be in accord with the previous
assumptions and hence to exclude other steady-state friction components than the Coulomb
friction. For the same reason, we require σ2 = 0 so that no viscous friction behavior will be
taken into account as mentioned before.

At this stage, some significant properties and parameter conditions posed on the LuGre
friction model, and known from the literature, should be briefly mentioned with respect to
the dissipative nature of friction. The necessary and sufficient conditions for passivity of the
LuGre friction model have been investigated in [24] and a strict, but quite simple at the same
time, inequality has been derived in terms of the model parameterization. It postulates the
input-output (I/O) dissipativity of an ẏ 7→ F map if and only if (see Property 3 in [19])

σ2 > σ1
Fs − C

C
, (15)

where Fs ≥ C corresponds to the stiction force, which is considered for mapping the Stribeck
effect (in the original LuGre model). We can note that even if (Fs−C) → 0 the viscous damping
σ2 ̸= 0 is required for rendering the LuGre model I/O dissipative. Since no viscous damping is
assumed in the recent study neither straightforward conclusions on passivity, and furthermore
stability, of a frictional system can be drown based on the analysis provided in [24], [19].

With assumptions made above on the steady-state friction and viscous damping the total
friction force described by the LuGre model becomes

F (ẏ) = σ1ẏ + σ0

(
1− σ1

|ẏ|
C

)
z . (16)

Therefore, the unforced motion dynamics (7) can be written in the state-space form

[ż, ÿ]T = A(ẏ)[z, ẏ]T , (17)

with the state-dependent system matrix

A(ẏ) =

(
−σ0

|ẏ|
C 1

−σ0

(
1− σ1

|ẏ|
C

)
−σ1

)
. (18)

To be able to make a statement about the damping characteristics of system (17), (18), or
generally first of all about its stability, the linearization of (18) should be made. However,
this requires inspecting the total domain of velocity magnitudes which can render our analysis
cumbersome. Furthermore, no particular operating points of |ẏ| can be identified so as to
perform a reasonable linearization. In fact, we are rather interested in the transient dynamics of
system (17), (18), i.e. after the first motion reversal and until the final motion stop. The single
particular state which is appropriate for linearization is ẏ → 0. This is a boundary case close to
the motion reversal or final motion stop. Here the system matrix becomes

A(0) = lim
ẏ→0

A(ẏ) =

(
0 1

−σ0 −σ1

)
. (19)
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It is evident that for any σ0 > 0 and σ1 > 0 the eigenvalues of A(0) are in the left-half complex
plane and the linearized system is asymptotically stable. This is well in accord with the results
of linearization in the so-called stiction regime of LuGre friction model which have been provided
in the original work [17]. The damping characteristics are fully determined by the σ0 and σ1
parameters. For the critically-damped solution of characteristic polynomial of matrix A(0) one
can show that if σ1 < 2

√
σ0 the system has an oscillating behavior. That means multiple motion

reversals should occur before reaching the final equilibrium state.
In order to prove a stable convergence of system (17), (18) we apply the Aiserman’s method

[25] of finding a suitable Lyapunov function candidate V (z, ẏ) and evaluating its time derivative.
The system matrix (18) can be split into the constant (state-independent) and variable (state-
dependent) terms as

A(ẏ) = A0 + Ã(ẏ) =

(
0 1

−σ0 −σ1

)
+

(
−f(ẏ) 0
σ1f(ẏ) 0

)
, (20)

where f(ẏ) = σ0|ẏ|/C > 0 for all ẏ ̸= 0. We assume the positive definite (p.d.) matrix

P =

(
σ0 0
0 1

)
(21)

that yields a p.d. Lyapunov function candidate V = (z, ẏ)P (z, ẏ)T , which is radially unbounded
since V → ∞ as ∥(z, ẏ)∥ → ∞. Now, evaluating the Lyapunov equation for the constant part
of the system matrix one obtains

Q0 = −AT
0 P − PA0 =

(
0 0
0 2σ1

)
. (22)

It can be seen that for a positive micro-damping σ1 the matrix Q0 is positive semi-definite
(p.s.d.) so that the corresponding part of derivative of the Lyapunov function candidate

V̇0(z, ẏ) = −(z, ẏ)Q0(z, ẏ)
T ≤ 0 (23)

is negative semi-definite (n.s.d.) only. This is quite natural since for V̇0 = −2σ1ẏ
2 no impact

of the z-dynamics can be taken into account and evaluated. In fact, the V̇0 = 0 for ẏ = 0
does not necessary imply that z = 0. For the state-dependent part of the system matrix the
corresponding Lyapunov equation yields

Q̃(ẏ) = −ÃT (ẏ)P − PÃ(ẏ) =

(
2f(ẏ)σ0 −f(ẏ)σ1
−f(ẏ)σ1 0

)
≡
(

2σ0 −σ1
−σ1 0

)
. (24)

Note that the last (equivalence) transformation in (24) is due to the positive f(·) for all
ẏ ̸= 0. The obtained (partial) solutions of both Lyapunov equations, i.e. (22) and (24), allow
constructing the derivative of the total Lyapunov function candidate as

V̇ = V̇0(z, ẏ)− (z, ẏ)Q̃(ẏ)(z, ẏ)T = −2σ1ẏ
2 − 2σ0z

2 + 2σ1zẏ ≡ −ẏ2 − σ0
σ1

z2 + zẏ. (25)

For V̇ to be negative definite (n.d.) the ellipsoid inequality

ẏ2 +
σ0
σ1

z2 > zẏ (26)

should hold ∀ z ∈ R, y ∈ R. Here it is worth noting that the internal friction state z is bounded.
This has been explicitly addressed and shown in [19] (see Property 1 therein). Nevertheless,
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for the sake of simplicity, we do not account for this auxiliary condition. It is evident that
(26) holds always when sign(z) ̸= sign(ẏ). This corresponds to all the intervals [yr, y0], i.e.
after a motion reversal and until zero-crossing of hysteresis transition curve (see Section 2). For
sign(z) = sign(ẏ) we prove the solution of equality ẏ2 + σ0/σ1z

2 = zẏ, which is

z =
σ1
2σ0

(
ẏ ± ẏ

√
−4σ0 − σ1

σ1

)
. (27)

It is evident that for equation (27) obtains a real solution, the following parameter condition

σ0 <
σ1
4

(28)

should hold. Otherwise, no real solutions of friction state z are existing and we can conclude that
the inequality (26) holds everywhere in the state-space. This yields V̇ to be n.d. and ensures
a stable system convergence to the (z, ẏ) = 0 equilibrium. In case when however (28) holds,
there are regions in the state-space where V̇ is not n.d. and the system becomes unstable in the
Lyapunov sense. Though, we will not analyze this case in more details since for real physical
systems the parameter relation (28) appears as improper. Recall that σ0 corresponds to the
stiffness and σ1 to the micro-damping of frictional contacts. Hence, in almost all physically-
reasonable friction systems σ0 ≫ σ1.

It is intuitively reasonable that higher micro-damping, i.e. higher σ1 values, provides a faster
convergence towards the equilibrium. This implies (indirectly) a lower number i of motion
reversals until the relative motion will fully stop. However, an interesting fact occurs when
allowing even zero micro-damping, i.e. σ1 = 0. In that case one can easily show that the
resulted system matrix

Â(ẏ) =

(
−σ0

|ẏ|
C 1

−σ0 0

)
(29)

is n.d. for all y ̸= 0. This yields the system asymptotically stable at hysteresis transitions
and marginally stable at zero velocity, i.e. at motion reversals. Also when assuming a related
Lyapunov function candidate

V̂ =
1

2
ẏ2 +

1

2
σ0z

2 (30)

one can easily obtain
˙̂
V = −σ2

0

|ẏ|
C

z2 (31)

which is n.d. in the whole state-space. This yields the system asymptotically stable even if zero
micro-damping is assumed.

3.2. Maxwell-slip model
The Maxwell-slip friction model can be well understood by means of the associated Maxwell-slip
structure as depicted in Figure 4. The latter contains N parallel-connected elasto-plastic (or
elasto-slip) Maxwell elements which are either sticking or slipping. When the j-th element is
subject to the (common) input velocity ẏ the linear spring with stiffness kj is elongating as long
as kj |y| ≤ cj . Once the spring force exceeds the individual breakaway force cj , the element begins
to slip and that until the next motion reversal. It is worth noting that all the slipping blocks are
assumed as massless so that no dynamic interaction occurs during their relative motion. The
associated output friction force (of each block) is Fj = kjy when sticking and Fj = cjsign(ẏ)
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Figure 4. Maxwell-slip structure of N
parallel-connected elasto-slip (Maxwell)
elements. Each j-th element is charac-
terized by ist individual stiffness kj > 0
and breakaway force cj > 0. The ele-
ments are driven by the common velocity
input ẏ. Each element is sticking during
the relative spring elongation, i.e. while
kj |y| ≤ cj . Afterwards the element is
slipping, with a constant counteraction
cjsign(ẏ), until the next motion reversal.

when slipping (compare with Ky reversal transition in Section 2). Due to a parallel connection
of the blocks the total friction force is

F (ẏ) =

N∑
j=1

Fj . (32)

In order to analyze the system dynamics (7) when using the Maxwell-slip friction model, we
are to consider each elasto-slip Maxwell element by means of the play- and stop-type hysteresis
operators (see [15], [26], [27] for details). Recall that an elasto-slip Maxwell element offers the
same transfer characteristics as the stop-type hysteresis operator. To that end, the stop-type
hysteresis operator can be constructed by means of his play-type counterpart. The transfer
characteristics of a play-type hysteresis operator x = P(r, x0)[y] are shown in Figure 5. The
operator provides a multi-valued rate-independent map y 7→ x depending on the initial state x0
and parameter r. The latter determines, as can be seen from Figure 5, the width of the play
zone which equals 2r. One can realize that each time the input direction changes, the operator
is in the play zone until reaching the corresponding slope y− sign(ẏ)r. Within the play zone the
output remains constant while keeping its previous value. The operator dynamics in differential
form, of which later we will make use, is given by

ẋ =

{
ẏ if x− r = y ∨ x+ r = y ,

0 if x− r < y < x+ r .
(33)

In the following, and that for the sake of simplicity, we will write the play-type hysteresis

x

y

r

r 

Figure 5. Transfer characteristics
of rate-independent play-type hysteresis
operator P, also known as mechanical
backlash. The play-type hysteresis op-
erator x = P(r, x0)[y] is parameterized
by the width of the play zone 2r. Each
time the input direction changes, the op-
erator enters the play zone in which the
output remains constant while keeping
its previous value.
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operator by a functional notation x(y, r).
The unique property of a stop-type hysteresis operator is that this can be transformed from

its play-type counterpart by the simple algebraic relation y − x(y, r). This allows constructing
the single elasto-slip Maxwell element as

Fj = kj
(
y − x(y, rj)

)
, (34)

when tacking into account the corresponding parameterization rj = cj/kj . Recall that the
closed form (34) is rate-independent and represents the hysteresis transition, in relative force-
displacement coordinates, between the element sticking and slipping and vice versa.

Now, we are in a position to analyze the convergence of free motion (7), and therefore the
damping characteristics of pre-sliding hysteresis, when assuming the friction force (32). For the
sake of clarity we are first exploring the case N = 1, i.e. when a single elasto-slip Maxwell
element is assumed. Afterwards, we generalize our analysis to the case N > 1 and discuss a
limit case when N → ∞. We note that the case N = 1 corresponds to the linear reversal
transition which has been indicated by Ky and discussed before in Section 2. Here, however,
we are to establish a Lyapunov-based analysis so as to make it further extendable for a general
multi-element Maxwell-slip structure.

The single elasto-slip Maxwell element yields the free motion dynamics as

ÿ = −k1y + k1x(y, r1) . (35)

Since the hysteresis operator can accumulate, or eventually release, the energy in the system,
we introduce an internal state z = x − y, which is bounded by −r1 ≤ z ≤ r1, and apply the
Lyapunov function candidate

V (ẏ, z) =
1

2k1
ẏ2 +

1

2
z2. (36)

Note that V is p.d. and radially unbounded since V → ∞ as ∥(ẏ, z)∥ → ∞. The time derivative
of the Lyapunov function candidate results in

V̇ = ẏz + żz, (37)

which is case-specific depending on whether the element is sticking or slipping. Here it should be
noted that two cases correspond to the play zones and slopes of the play-type hysteresis operator
(see Figure 5). From the internal state dynamics ż = ẋ− ẏ point of view and with respect to (33)
we can emphasize that ż = 0 when operating on one of the slopes, and ż = −ẏ when operating
within a play zone. This renders the time derivative of Lyapunov function candidate as

V̇ =

{
ẏz for ẋ = ẏ (slope),
0 for ẋ = 0 (play zone).

(38)

It can be seen from Figure 5 that the right-hand side slope, i.e. ẏ > 0, implies z = −r, and
the left-hand side slope, i.e. ẏ < 0, implies z = r correspondingly. Therefore, we can conclude
that when operating on a slope the inequality ẏz < 0 always holds. The latter renders V̇ as n.d.
and implies the system is globally asymptotically stable in the Lyapunov sense when slipping.
On the contrary, within a play zone where V̇ = 0 the system yields marginally stable, but not
asymptotically stable, in the Lyapunov sense. Here the system moves along the closed elliptic
trajectories as has been analyzed before in Section 2.

Since the total time derivative of Lyapunov function candidate is n.s.d. only, i.e. V̇ ≤ 0,
we are to show that there exists an invariant set which consists of the stable linear limit cycles
during the system sticking. Applying the invariant set theorem (see [14] for details), we assume
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for some l = 1/2r2 + a > 0 the region Ω defined by V (ẏ, z) < l which is bounded. In fact, since
z is bounded by ±r, and further with respect to (36), one can see that Ω is bounded on the
±ẏ-axis by the constant a > 0 which is related to initial velocity. Also it is valid that V̇ (ẏ, z) ≤ 0
for all (ẏ, z) ∈ Ω. Now, we have to show that for the set R ⊂ Ω, which is the largest invariant
set with V̇ (ẏ, z) = 0, any trajectory with

(
ẏ(0), z(0)

)
∈ Ω tends to R as t → ∞. According to

(38), zero derivative V̇ = 0 corresponds to a play zone of play-type hysteresis operator for which
ẋ = 0. It should be noted that the set of all play zones is infinite and corresponds to the whole
horizontal axis of relative position y. For any play zone the corresponding x-value is constant
and the motion dynamics (35) becomes

ÿ − k1z = 0 . (39)

Since ẏ = −ż and ÿ = −z̈ we transform the motion dynamics (39) into the relative z-coordinates
and obtain the free motion of sticking system as

z̈ + k1z = 0. (40)

Note that the same result we obtained in Section 2 (see equation (8)). It is obvious that the (ẏ, z)
solutions constitute the closed elliptic trajectories of limit cycles whose union is the invariant
set R. It is worth to recall that for any initial velocity ẏ(0) ̸= 0, i.e. the system is in slipping,
the internal state is z = −sign(ẏ)r, and the play-type hysteresis operator proceeds along one
of the slopes until the next motion reversal. Further we stress that for any initial state in Ω
with 0 < l ≤ 1/2r2 the trajectory (ẏ, z)(t) ∈ R for all t ≥ 0. Here the axes of elliptic limit
cycles depend on the initial state (ẏ, z)(0). For any initial state with l > 1/2r2 the trajectory
first proceeds towards the corresponding z = −sign(ẏ)r boundary, i.e. depending on the initial
ẏ(0) value, and afterwards slides along this boundary until the next motion reversal occurs. The
motion trajectories with different initial states are shown in the (ẏ, z) plane in Figure 6.

z

y 

R

 

Figure 6. Trajectories of the system
(35) in the (ẏ, z) plane. The trajectories
starting within R form the elliptic limit
cycles. The trajectories starting in
Ω outside of R first run towards the
corresponding z = −sign(ẏ)r boundary
and then proceed to the next motion
reversal. Afterwards, the boundary
(largest) limit cycles occurs.

Now, we are to generalize our analysis made above for the case when N > 1, therefore
incorporating a multi-element Maxwell-slip structure when describing the friction force. The
corresponding free motion dynamics results in

ÿ = −
N∑
j=1

kjy +
N∑
j=1

kjxj(y, rj), (41)

which reduces to (35) when N = 1. Introducing the N × 1 vectors of contact stiffness
k = [k1, . . . , kN ]T , play-type hysteresis operators x = [x1, . . . , xN ]T which are parameterized
by r = [r1, . . . , rN ]T , and absolute positions y = y[1, . . . , 1]T we rewrite the system dynamics
(41) into the vector form

ÿ = −kTy+ kTx(y, r). (42)
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Further we introduce, similar as in case of single Maxwell-slip element, the vector of internal
states z = x − y which captures the individual transitions of play-type hysteresis operators.
Defining the p.d. diagonal matrix K̃ = diag(k1, . . . , kN ) we assume the Lyapunov function
candidate

Ṽ (ẏ, z) =
1

2
ẏ2 +

1

2
zT K̃z, (43)

which is p.d. and radially unbounded since Ṽ → ∞ as ∥(ẏ, z)∥ → ∞. It can be noted that the
Lyapunov function candidate (43) contains the kinetic energy of the free motion and potential
energy associated with each hysteresis operator, i.e. elasto-slip Maxwell element. The time
derivative of the Laypunov function candidate results in

˙̃V = ẏkTz+ żT K̃z. (44)

With respect to the transfer characteristics of each play-type hysteresis operator (see Figure 5
and equation (38)), and herewith associated behavior of single elasto-slip Maxwell element, one
can show that

˙̃V =

{
ẏkTz < 0 if all N elements are slipping,

ẏkTz− ẏT K̃z = 0 if all N elements are sticking.
(45)

It is easy to recognize that (45) constitutes a boundary case where all play-type hysteresis
operators are either on a slope or in a play zone. However, since we are interested in analyzing
the case when the system is not asymptotically stable but proceeds in a limit cycle, i.e. when
˙̃V ≡ 0, the second case of (45) provides us with the required (strict) condition. In fact, the
trajectory is within invariant set R if and only if all N play-type hysteresis operators are in a
play zone. In order to prove this, one can easily show that when at least one operator j is on a
slope, the corresponding element has żT (j) = 0 ̸= −ẏT (j) and its contribution to (44), which is

ẏkT (j)z(j) + żT (j)K̃(j, j)z(j) < 0 ,

renders ˙̃V as n.d. Thus, one can conclude that it is sufficient that at least one element is slipping
so as the overall system becomes asymptotically stable, and therefore converges to the motion
equilibrium ẏ = 0.

Now, we can analyze whether and when the condition derived above satisfies the pre-sliding
system behavior, in particularly in view of hysteresis reversal transitions addressed before in
Section 2. While h(y) should be continuously differentiable (see property (b) in Section 2), the
friction force (32) constitutes only a piecewise differentiable approximation of h(y). In fact, a
force-displacement hysteresis branch described by (32) is a piecewise linear curve with the break
points which characterize the sticking-slipping transitions of single elasto-slip Maxwell elements.
Since the elasto-slip Maxwell elements are acting in parallel, each slope segment of the piecewise
linear curve appears as a superimposed stiffness of all elements which are (still) sticking. At the
same time, it should be stressed that immediately after each motion reversal all elements are
sticking. Afterwards, they switch one by one to slipping, and that depending on their individual
kj and cj parameters, while proceeding along the h(y) curve. Therefore, one can conclude that
higher numbers N approximate the h(y) function with higher accuracy and, at the same time,
provoke more frequent switching from sticking to slipping along the h(y) curve. This implies
rk+1 − rk → 0 as N → ∞, where k and k + 1 are two arbitrary elements whose switching occur
successively. Hence, for any element j = 1, which switches as first after a motion reversal, r1 → 0

as N → ∞. With respect to condition of the negative definiteness of ˙̃V , derived above, we can

conclude that ˙̃V → n.d. as N → ∞, and that over the whole (ẏ, z) state-space. As corollary,
one can show that the invariant set contains only the equilibrium point, i.e. R → 0, as N → ∞
(cf. with Figure 6).
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4. Experimental observations
In this Section we show and discuss some experimental observations in favor of the analysis of pre-
sliding frictional hysteresis made above. The experimental data of a measured motion response
are obtained from an actuated rotary system with mechanical friction interfaces. The relative
angular displacement y and velocity ẏ are measured using a precise digital encoder mounted
on the rotary shaft. The overall moving mass (inertia) is axially-symmetrical and assumed to
be homogenous and lumped. The feed actuation torque u allows driving the system at certain
constant (also low) velocity and can be switched off stepwise, so as to realize (afterwards) a free
motion response towards the equilibrium. The principal configuration of the experimental setup
in use is shown in Figure 7. Most notable is that the multiple mechanical frictional interfaces
can be considered as an aggregated one due to the stiff relative motion within the same rotary
degree-of-freedom y. The experimental data, shown in the following, are real-time and collected

3
F

,u y 

1
F

m
2
F

Figure 7. Principal configuration of the
experimental actuated rotary system with the
lumped moving mass (inertia) m. The frictional
interfaces of the ball-bearing F1, F2 and gear
teething F3 type are considered as an aggregated
friction F , since operating in the same rotary
degree-of-freedom. The actuation torque u induces
the angular relative displacement with velocity ẏ.

with the fixed sampling rate of 2 kHz. More details about the used experimental system can be
found in [28].
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Figure 8. Experimental data of the
measured motion response in pre-sliding
range. The relative displacement with
constant low-velocity is actuated by a
constant feed force (torque) until the
actuation is switched off. Afterwards,
the free system response occurs until the
complete motion stop. The nearly linear
velocity slope indicates the predominant
Coulomb friction and irrelevance of the
viscous (exponential) damping.

In Figure 8, the measured motion response is shown as time series together with the
corresponding input torque. At a constant torque level the nearly constant relative velocity of
about 12.3 deg/s occurs until the actuation is switched off. The irregular high-frequent chattering
of the measured velocity is attributed to the sampled and hold (digital) encoder signal and its
discrete-time derivation. After the actuation switch off the velocity descends towards zero and
the system completely stops after a low transient overshoot. The visible, nearly linear, slope
of decreasing velocity indicates a predominance of Coulomb friction (cf. with Section 2) and
irrelevance of the viscous (exponential) damping close to the motion stop.

The free motion trajectories are shown in Figure 9 in the (ẏ, y) phase-plane. The measured
motion response is compared with the model fit of system dynamics once using the LuGre
(Figure 9(a)) and once using the Maxwell-slip (Figure 9(b)) friction model. Note that after
the actuation switch off the system behavior can be captured by (7) with an appropriately set
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Figure 9. Free motion trajectories
in the (ẏ, y) phase-plane. Comparison
of experimental measurements with the
model fit of system dynamics (7) when
using the LuGre friction model (a) and
Maxwell-slip (with N = 3) friction
model (b). The model fit is obtained by
nonlinear least-squares minimization of
the velocity error ∥ẏ− ˙̂y∥, where ˙̂y is the
model-predicted relative velocity. The
zoom-in inclusions show the convergence
of both models towards equilibrium.

non-zero initial velocity and initial friction F (0) = sign(ẏ)C. The former is directly determined
from the available measurement. The latter is inherently included into the model fit when
estimating the parameters. The model fit is obtained, in case of both friction models, by the
standard nonlinear least-squares minimization (Levenberg-Marquardt algorithm) of the velocity

error ∥ẏ − ˙̂y∥, where ˙̂y is the model-predicted velocity response. In case of the Maxwell-slip
friction model the number of elements N = 3 is assumed. This renders six friction parameters
to be identified and makes the model complexity, i.e. in terms of number of parameters, better
comparable with that of the LuGre friction model. Note that besides the friction parameters
the moving mass (inertia) is equally identified in both cases. From Figure 9, one can see that
both identified friction models provide a prediction of free motion response which coincides well
with experimental data. At the same time, one can see, from the zoom-in included in Figure 9,
that in case of the Maxwell-slip friction model the trajectory does not converge to equilibrium
but towards a stable (micro) limit cycle. This is well in accord with the analysis we made at
the end of Section 3.2.
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Figure 10. Friction-displacement re-
sponse of the model fit of system dy-
namics (7) when using the LuGre and
Maxwell-slip friction models. The first
motion reversal (right-hand side) occurs
after the system slipping with a con-
stant Coulomb friction. The hysteresis
reversal transition occurs, in case of both
models, until the next motion reversal
(left-hand side). The latter is followed by
the attained equilibrium state. In case of
Maxwell-slip friction model a micro limit
cycle occurs instead of the motion stop.

Further, the pre-sliding hysteresis response of both identified models are shown in Figure 10
in the relative force-displacement coordinates. Both friction models offer nearly the same level
of constant Coulomb friction until the first motion reversal (on the right-hand side). After the
reversal hysteresis transitions, which are qualitatively similar but differ in the smoothness of
curvature, the next motion reversal occurs (on the left-hand side) in case of both models. Close
to the latter, both friction trajectories attain the final equilibrium state, while the Maxwell-slip
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model provides the residual (micro) limit cycles instead of a complete motion stop.

5. Conclusions
We have analyzed and demonstrated in a numerical simulation and with experiment the damping
characteristics of frictional hysteresis within the so called pre-sliding range. Based on the general
consideration of friction force transitions, i.e after a motion reversal, we have compared the
ideal cases of linear contact stiffness and discontinuous Coulomb friction, and the generic case
of hysteresis in displacement. It has been analyzed analytically and shown in a simulation
how the free motion trajectories, in all three cases, proceed towards the equilibrium. Also
two dynamic friction models, e.g. LuGre and Maxwell-slip, have been taken into consideration
and investigated on their nonlinear dynamics in context of a free moving mass with frictional
damping. Using the Lyapunov stability theory and related tools, like Aiserman method and
invariant set theorem, we have derived the conditions of asymptotic and non-asymptotic stability
of relative motion with both friction models. In particularly, for the LuGre friction model
the impact of contact stiffness and micro-damping parameters has been emphasized and the
asymptotic stability, even without viscous friction term, has been proved. For the Maxwell-
slip friction model the main result consists in deriving the criterion of asymptotic stability and
analysis of occurrence of the limit cycles. Some experimental observations shown and compared
with the model-based motion prediction argued in favor of the analysis made before.
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