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Abstract. We construct examples of robust homoclinic orbits for systems of ordinary
differential equations coupled with the Preisach hysteresis operator. Existence of such orbits is
demonstrated for the first time. We discuss a generic mechanism that creates robust homoclinic
orbits and a method for finding them. An example of a homoclinic orbit in a population
dynamics model with hysteretic response of the prey to variations of the predator is studied
numerically.

1. Introduction

The theory of hysteresis operators developed in [1–3] as well as other mathematical descriptions
of hysteresis (such as differential inclusions [4], differential inequalities [5] and variational
descriptions of rate-independent processes [6]) allow one to analyze stability [7, 8], bifurcations
[9–12] and complex dynamics [13] of systems exhibiting hysteresis. Coupled systems of
differential equations and hysteresis operators have been used to model mechanical [2, 14, 15],
electro-magnetic [16, 17], electro-mechanical [18, 19] and engineered systems [20–22], phase
transition processes [3, 23], dynamics of fluids in porous materials [24, 25], dynamics of
populations [26–28] and economic systems [29–31]; see [32] for further examples of applications.
In particular, these models include ordinary differential equations coupled with the Preisach
hysteresis operator that contain the time derivative of the output of the Preisach operator.
Although more complex situations are possible, a generic solution of such a system can be
obtained by matching solutions of several ordinary differential systems (the switching points
from one to another system include the turning points of the input of the Preisach operator
as well as some values stored by the dynamic memory configuration of this operator) [33–35].
While these ordinary differential systems are different, they all have the same set of equilibrium
points [36].

This picture suggests a possibility of existence of robust homoclinic trajectories in the
system with hysteresis operator provided that (a) the same point is a stable equilibrium of
one ordinary differential system and, simultaneously, an unstable equilibrium of the other; and,
(b) a trajectory of the first system converging to this equilibrium point in forward time could be
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matched with a trajectory of the second system converging to the same point in backward time
in such a way that the system with hysteresis would switch from the second trajectory to the
first trajectory. The concatenation of the two trajectories would then form a homoclinic loop of
the differential system with the hysteresis operator.

In this work, we show the existence of such homoclinic trajectories. To the best of our
knowledge, homoclinic trajectories of systems with hysteresis operators have not been discussed
before.

Existence of homoclinic trajectories in the systems with Preisach operator under the time
derivative is closely related to the so-called partially stable equilibria [36], i.e. unstable equilibria,
which have an open basin of attraction (in the infinite-dimensional phase space of the system).
Such equilibria simultaneously attract and repel many trajectories, and they can be compared
to a saddle-node singular point of an ordinary differential system, however they are robust.
Systems with Preisach operator available in the literature do not demonstrate abundance of
partially stable equilibria, and, moreover, it is even harder to find special kind of partially stable
equilibria that would lead to the appearance of robust homoclinic orbits in such systems. We
present our results in the context of mathematical ecology. Namely, we are motivated by a
predator-prey system [37], where the prey switches between two modes of behaviour, safe and
risky, in response to varying abundance of predator. Similar type of non-hysteretic safe-risky
adaptive behaviour of the prey in response to the pressure of the predation was recently suggested
as a possible mechanism leading to the so-called predator pit phenomena, where a bistability
between two steady states with nonzero predator-prey densities appears [38]. When the switch
between two modes of behaviour becomes hysteretic, one can observe numerically the existence
of a robust homoclinic cycle [37].

We first construct a few examples of simple systems that have homoclinic orbits (Section
2). Then we give a numerical evidence of the existence of such orbits in a more complex
predator-prey model with a refuge patch where we assume hysteresis in the reaction of the prey
to variations of the predator abundance (Section 3). Unlike the familiar homoclinic orbits of
ordinary differential systems, the homoclinic trajectories that we obtain are robust, that is they
are preserved under variations of parameters and more general (sufficiently small) perturbations.
Moreover, our systems typically have a continuous family of homoclinic orbits.

2. Examples of homoclinic orbits

2.1. Preisach operator

In this work we consider a coupled system of differential equations

u̇ = f(u, v) + ẋh(u, v), v̇ = g(u, v) (1)

and an operator equation
x(t) = (P[η0]v)(t), (2)

where t ≥ t0, and f, h, g : R2 → C1.
The Preisach operator is defined by

(P[η0]v)(t) =

∫ ∞

0

∫ αS

0

µ(αR, αS)(RαR,αS
[η0(αR, αS)]v)(t) dαRdαS , (3)

where v = v(t), t ≥ t0 is the input; the function η0 = η0(αR, αS) which takes values 0 and
1 is the initial state function; µ(αR, αS) is an integrable density function; and RαR,αS

is the
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non-ideal relay operator with thresholds αR, αS satisfying αR ≤ αS :

(RαR,αS
[η0]v)(t) =























0 if v(τ) ≤ αR for some τ ∈ [t0, t]
and v(s) < αS for all s ∈ [τ, t];

1 if v(τ) ≥ αS for some τ ∈ [t0, t]
and v(s) > αR for all s ∈ [τ, t];

η0(αR, αS) if αR < v(τ) < αS for all τ ∈ [t0, t].

(4)

We represent states (4) of the relays graphically on the half-plane {(αR, αS): αR ≤ αS},
which is divided into two parts by a staircase polyline Ω = Ω(t) with the relays in state 1 below
(to the left) of this line and in state 0 above (to the right) of this line, see Fig. 1 (left). At any
moment t ≥ t0 the right end point of Ω(t) is the point αR = αS = v(t) [1]. For simplicity, the
measure µ(αR, αS) is often assumed to have triangular support αm ≤ αR ≤ αS ≤ αM , hence we
are interested only in the representation of the states of the relays inside this triangle.

The staircase polyline Ω(t) changes over time in accordance with formula (4) in response to
variations of continuous non-negative input v(t). We illustrate the evolution of Ω(t) with time
t ≥ t0 using the following example with αm = 0. Let Ω(t0) be the horizontal segment αS = v(t0),
0 ≤ αR ≤ v(t0) (see Fig. 1, right). If v(t) monotonically decreases on an interval t ∈ [t0, t1],
then Ω(t) acquires the vertical link αR = v(t), v(t) ≤ αS ≤ v(t0) as shown in Fig. 2, left.
Now, suppose that the input monotonically increases for t ∈ [t1, t3]. Then Ω(t) acquires a new
horizontal link αS = v(t), v(t1) ≤ αR ≤ v(t) < v(t0) (see Fig. 2, right). If the input reaches its
initial value v(t0) at some moment t∗2, then Ω(t∗2) coincides with the initial horizontal segment
Ω(t0) (Fig. 1, right). For t ∈ [t∗2, t3] the input further increases and Ω(t) remains horizontal until
v(t) reaches a maximum v(t3) (Fig. 3, left). If v(t) decreases after the moment t3, then Ω(t)
acquires a vertical link, see Fig. 3, right. This example demonstrates how the staircase polyline
Ω(t) can acquire and loose multiple vertical and horizontal links in response to variations of the
input v(t); for more details see [13]. Below Ω(t) is referred to as the polyline of the state η(t) of
the Preisach operator or, simply, the state.

In equations (1), (2), the derivative of the output of the Preisach operator is used. For the
evaluation of this derivative, the most right link Ωe = Ωe(t) which is attached to the right end
point αR = αS = v(t) of the staircase polyline Ω(t) is important, see Fig. 4, left (if Ω has
infinitely many links, then Ωe = ∅). Denote by (vm, v), (v, vM ) the end points of the segment
Ωe, where vm = v if Ωe is a vertical segment and vM = v if Ωe is horizontal. If v = v(t) increases,
then the time derivative of the output of the Preisach operator satisfies [33]

d(P[η0]v)

dt
= v̇H(v, vm) with H(v, vm) =

∫ v

vm

µ(αR, v) dαR. (5)

If v decreases, then

d(P[η0]v)

dt
= v̇V (v, vM ) with V (v, vM ) =

∫ vM

v

µ(v, αS) dαS . (6)

2.2. Homoclinic solutions

Equilibria of the system (1), (2) can be obtained by setting all the derivatives including the
derivative ẋ of the Preisach operator to zero.

Definition 1. We call a solution (u∗, v∗) of the equations f(u∗, v∗) = 0, g(u∗, v∗) = 0 an

equilibrium of the system (1), (2).
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Figure 1. The domain {(αR, αS): αm ≤ αR ≤ αS} with αm = 0 is divided into two parts by a
staircase polyline Ω = Ω(t) with the relays in state 1 below (to the left) of this line (grey colour)
and in state 0 above (to the right) of this line (white colour). Here all relays with αS ≤ v are in
the state 1, all relays with αR ≥ v are in the state 0, and the state of other relays is defined by
the polyline Ω. In the right figure Ω(t0) is the horizontal segment αS = v(t0), 0 ≤ αR ≤ v(t0).
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Figure 2. Evolution of the staircase polyline Ω = Ω(t) from the initial state Ω(t0) shown
in Fig. 1 (right) in response to an input v(t). For t0 < t ≤ t1 the input v(t) monotonically
decreases, and the line Ω consists of two segments (left panel, t = t1): the vertical link αR = v(t),
v(t) ≤ αS ≤ v(t0) connects to the horizontal link, which is a part of the segment Ω(t0) shown in
Fig. 1 (right). For t1 < t ≤ t2 the input v(t) monotonically increases, where v(t1) < v(t2) < v(t0),
and the state Ω has three links as shown on the right panel for the moment t = t2. The leftmost
horizontal link and the vertical link of the line Ω(t2) are parts of the staircase Ω(t1) presented
on the left panel, and the rightmost horizontal link is αS = v(t2), v(t1) ≤ αR ≤ v(t2).
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Figure 3. Evolution of Ω(t) from the state Ω(t2) shown in Fig. 2 (right). For t2 ≤ t < t3
the input v(t) monotonically increases and, at the moment t∗2 ∈ [t2, t3), reaches the value
v(t∗2) = v(t0). The state Ω(t∗2) becomes the horizontal segment (which coincides with Ω(t0))
and remains the horizontal segment αS = v(t), 0 ≤ αR ≤ v(t) for all t∗2 ≤ t ≤ t3 (that is, as long
as the input increases), as shown on the left panel. After the moment t3 the input v(t) decreases
again, and the state Ω(t4) presented on the right panel for a moment t4 > t3 is similar to the
staircase in Fig. 2 (left).

Every equilibrium defines stationary solutions {u(t), v(t), η(t)} ≡ {u∗, v∗, η0} of system (1),
(2).

Assume that system (1), (2) has an equilibrium. Without loss of generality, assume that
u∗ = v∗ = 0. Since the output of the Preisach operator (2) is defined on a semiaxis t ≥ t0, we
use the following definition of a solution to system (1), (2) on the whole axis t ∈ R.

Definition 2. A triplet {u(t), v(t), η(t)} is a solution of (1), (2) if for each t0 this triplet is

a solution of (1), (2) with the initial values u0 = u(t0), v0 = v(t0), η0 = η(t0) on the semiaxis

t ≥ t0.

Definition 3. We call a solution {u(t), v(t), η(t)} homoclinic if u(t) → 0, v(t) → 0 for t → ±∞,

and either u(t) 6= 0 or v(t) 6= 0 for all t ∈ R.

In this work, we focus on the piecewise monotone homoclinic solutions {u(t), v(t), η(t)} with
monotone tails.

Assumption 1. There exist t1, t2 ∈ R such that t1 ≤ t2, and the component v of the homoclinic

solution {u(t), v(t), η(t)} is monotone for t ≤ t1 and for t ≥ t2.

For such trajectories we can define the limit of the state of the Preisach operator at t → ±∞.
We will write η(t) → η∗ as t → −∞ (or, as t → ∞) if the polyline Ω(t) of η(t) converges to the
polyline Ω∗ of η∗ (as a set on the plane (αR, αS)).

2.3. Existence of robust homoclinic orbits

To demonstrate rigorously the possibility of existence of homoclinic orbits, we consider the
following example of system (1):

u̇ = au+ bv − κ(ẋ− |cu+ dv|v), v̇ = cu+ dv (7)
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Figure 4. Evolution of the polyline Ω(t) for an input v(t) that has one maximum point
v(t1) = v1; Ωe(t) is the segment of this staircase polyline with the end point αR = αS = v(t)
on the bisector. The limit state Ω∗ (solid line on the left panel) in this example consists of a
horizontal segment and the vertical segment Ω∗

e. During the time interval (−∞, t1] when the
input v(t) increases, Ω(t) has three segments, the segment Ωe(t) is horizontal (thick dashed line).
The right panel shows the state Ω(t1) (solid line) at the moment when the input achieves its
maximum v(t1) = v1. After this moment, the input decreases, Ω(t) consists of four segments,
the segment Ωe(t) is vertical (thick dashed line).

and assume that the density function of the Preisach operator (2) is uniform, µ(αR, αS) ≡ 1.
This system has an equilibrium at zero, u = v = 0.

First, we prove the existence of a simple homoclinic orbit with the limit state η∗ shown in
Fig. 4 (left) such that the polyline Ω∗ has a sufficiently long vertical segment Ω∗

e = {(αR, αS) :
αR = 0, αS ∈ [0, vM ]}. We aim to construct a homoclinic trajectory with a component v(t)
that increases for t < t1, decreases for t > t1 and has one maximum point v(t1) (cf. Assumption
1), see Fig. 5.

Proposition 1. Assume that

∆ = ad− bc > 0, τ = a+ d > 0, D = τ2 − 4∆ > 0, (8)

κc > 0, and the segment Ω∗
e of the polyline Ω∗ of the state η∗ is vertical with the end points

(αR, αS) = (0, 0) and (αR, αS) = (0, v∗M ), where v∗M > a+d+2
√
∆

cκ
=: v1m. Then, for each

v1 ∈ (v1m, v∗M ] there is a homoclinic solution {u(t), v(t), η(t)} such that v(t1) = v1 is a single

extremum point of the component v(t), which is a point of maximum. That is, system (2), (7)
has infinitely many robust homoclinic trajectories satisfying η(t) → η∗ as t → ±∞.

Robustness means that the continual set of homoclinic trajectories persists under
perturbations of system parameters.

Proof. A homoclinic solution of system (2), (7) described in this proposition satisfies relation (5)
with vm = 0 for t < t1 and relationship (6) with vM = v1 for t > t1. Hence, for such a solution,
ẋ = vv̇ for t < t1 and ẋ = (v1 − v)v̇ for t > t1 (where we use the relationship µ(αR, αS) ≡ 1
when calculating H(v, 0) and V (v, v1)). Substituting these expressions for ẋ in (7), we see that
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the homoclinic solution satisfies the linear differential system

u̇ = au+ bv, v̇ = cu+ dv (9)

on the semiaxis t < t1; and, the linear differential system

u̇ = (a− κv1c)u+ (b− κv1d)v, v̇ = cu+ dv (10)

on the semiaxis t > t1; the point (u(t1), v(t1)) = (u1, v1) lies on the nullcline v̇ = cu + dv = 0
of these systems, as v1 is the maximum value of the v-component. Furthermore, to prove the
proposition it suffices to show that for every v1 ∈ (v1m, v∗M ] ⊂ (0, v∗M ]:

(a) The solution of system (9) with the initial conditions u(t1) = −dv1/c, v(t1) = v1 satisfies
v̇ > 0 for all t < t1 and v → 0 as t → −∞;

(b) The solution of system (10) with the same initial conditions u(t1) = −dv1/c, v(t1) = v1
satisfies v̇ < 0 for all t > t1 and v → 0 as t → ∞.

Here (a) follows from conditions (8), which ensure that the zero equilibrium of system (9) is
a proper unstable node; (b) follows from the relationship v1 > v1m, which implies that the zero
equilibrium of system (9) is a proper asymptotically stable node.

The case κc < 0 can be considered similarly. In this case, the following analog of Proposition
1 is valid.

Proposition 2. Assume that conditions (8) and κc < 0 hold and the segment Ω∗
e of the polyline

Ω∗ of the state η∗ is horizontal with the end points (αR, αS) = (0, 0) and (αR, αS) = (v∗m, 0)
with v∗m < −v1m, where v1m is defined in Proposition 1. Then, for each v1 ∈ [v∗m,−v1m) there

is a homoclinic trajectory with mint∈R v(t) = v1. That is, system (2), (7) has infinitely many

robust homoclinic trajectories satisfying η(t) → η∗ as t → ±∞ such that the v-component of the

trajectory has a single extremum point, which is a point of minimum.

As the last example of this section, we consider homoclinic trajectories which have more
complex limit states η∗ at t → −∞, see in Fig. 6, and more than two monotonicity intervals of
the v-component, see Fig. 7.

Proposition 3. Assume that conditions (8) hold, κc > 0 and the polyline Ω∗ of state η∗

includes three links connecting the corner points (0, 0), (0, v∗M ), (v∗m, v∗M ), (v∗m, v∗M2), where

0 < v∗M < a+d−2
√
∆

cκ
=: v1M , v∗M2 >

a+d+2
√
∆

cκ
=: v1m, and v∗m < −v1m. Then system (2), (7) has

a robust homoclinic trajectory with the limit state η(t) → η∗ as t → −∞. The v-component of

this trajectory has a single maximum point and a single minimum point with maxt∈R v(t) = v∗M
and mint∈R v(t) < v∗m.

We note that the homoclinic solution described in this proposition has different limit states
at t → ±∞, that is limt→∞ η(t) 6= limt→−∞ η(t) = η∗. As a matter of fact, there are again
infinitely many homoclinic trajectories with the maximum value v1 = maxt∈R v(t) of the v-
component ranging over the interval v1 ∈ (0, v∗M ]. We consider one of these trajectories as an
example.

Proof. The proof is similar to that of Proposition 1. Here, it suffices to show that:

(a) The solution of system (9) with the initial point u(t1) = −dv∗M/c, v(t1) = v∗M on the
nullcline v̇ = cu+ dv = 0 satisfies v̇ > 0 for all t < t1 and v → 0 as t → −∞;

(b) The solution of system (10) with v1 = v∗M starting from the initial point u(t1) = −dv∗M/c,
v(t1) = v∗M satisfies v̇ < 0 on an interval t ∈ (t1, t2] where the end point (u(t2), v(t2)) =: (um, vm)
satisfies v(t2) = v∗m.
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Figure 5. A homoclinic orbit of system (2), (7) satisfying the assumptions of Proposition 1 for
κ = 1, a = 5, b = −7, c = 1, d = −1, v∗M ≥ 7. The orbit is located in the positive quadrant; the
arrow shows the direction of motion; zero is the equilibrium. The maximum of the v-component
is achieved at the point u = v = 7 of the nullcline v̇ = u− v = 0. Fig. 4 illustrates the evolution
of the state η(t) of the Preisach operator for this orbit. The solid line Ω = Ω∗ on the left panel
of Fig. 4 is the polyline of the limit state η∗ defined by η(t) → η∗ as t → ±∞.

(c) The solution of system (10) with v1 = v∗M2 starting from the initial point (u(t2), v(t2)) =:
(um, v∗m) satisfies v̇ < 0 on an interval t ∈ [t2, t3) where the end point (u(t3), v(t3)) =:
(−dvmin/c, vmin) lies on the nullcline v̇ = cu+ dv = 0.

(d) The solution of the equation

u̇ = (a+ κv3c)u+ (b+ κv3d)v, v̇ = cu+ dv (11)

with v3 = vmin starting from the initial point (u(t3), v(t3)) = (−dvmin/c, vmin) on the nullcline
v̇ = cu+ dv = 0 satisfies v̇ > 0 for all t > t3 and v → 0 as t → ∞.

Statement (a) follows from assumptions (8), which ensure that the zero equilibrium is a
proper unstable node of system (9).

The vector fields (u̇, v̇) of systems (9) and (10) coincide on the nullcline v̇ = 0. As v̇ > 0
for t < t1 for the solution of (9) with the initial condition (u(t1), v(t1)) = (−dv∗M/c, v∗M ) on the
nullcline, it follows that the solution of (10) starting from the same initial condition satisfies v̇ < 0
for sufficiently small t− t1 > 0. This solution of (10) remains in the half plane v̇ = cu+ dv < 0
for all t > t1 and satisfies v → −∞ as t → ∞, because the assumption v∗M < v1M ensures that
the zero equilibrium is a proper unstable node of system (10) with v1 = v∗M . As v∗M > 0 > v∗m,
this solution will eventually hit the line v = v∗m at some moment t2 at a point (um, v∗m). This
proves (b).

The assumption v∗M2 > v1m implies that the zero equilibrium of system (10) with v1 = v∗M2

is a proper asymptotically stable node. As v∗m < 0 and the point (um, v∗m) lies in the half plane
v̇ = cu + dv < 0, it follows that the solution of this system starting at (um, v∗m) will hit the
nullcline v̇ = cu+ dv = 0 at some point (−dvmin/c, vmin), that is (c) holds.
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Figure 6. Evolution of the staircase polyline Ω(t) for the homoclinic trajectory described
in Proposition 3. The segment Ωe(t) of this staircase line is the link with the end point
αR = αS = v(t) on the bisector. The left panel shows the limit state of the homoclinic orbit
at t → −∞. The right panel shows the state Ω(t1) (solid line) at the moment when the v-
component achieves its maximum value v(t1) = v∗M . After this moment, v(t) decreases until
it reaches its minimum value v(t3) = vmin, then it increases and tends to zero. The polyline
Ω(t) has only two links between the moment t2 ∈ (t1, t3) when the input v(t) reaches the value
v(t2) = v∗m and the moment when it reaches its minimum v(t3) = vmin.

Finally, (d) follows from the relationships vmin < v∗m < −v1m < 0, which ensure that the zero
equilibrium is a proper asymptotically stable node of system (11) with v3 = vmin.

3. Numerical examples

3.1. Population dynamics model

In this section, we give a numerical evidence of the existence of homoclinic trajectories in a
predator-prey type model [37], which has nontrivial dynamical properties such as multiple stable
equilibria:

u̇ = a(u)− f(u)g(v)− h(t)u, (12)

v̇ = σf(u)g(v)− c(v), (13)

where u is the number of prey; v is the number of predator; the term

a(u) = ρu− λu2

describes the logistic growth of the prey with the birth rate ρ and the competition rate λ;

f(u) =
ωu

φ+ u

is the Holling type II functional response;

g(v) =
v

1 + βv

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012012 doi:10.1088/1742-6596/727/1/012012

9



-30 -25 -20 -15 -10 -5
u

-12

-10

-8

-6

-4

-2

2
v

Figure 7. Homoclinic orbit of system (2), (7) satisfying the conditions of Proposition 3. The
orbit converges to the zero equilibrium; the arrow shows the direction of motion. The parameters
are κ = 1, a = 5, b = −7, c = 1, d = −1, v∗M = 1, v∗m = −7 and v∗M2 = 7. The v-
component has its maximum at the point (u(t1), v(t1)) = (1, 1) of the nullcline v̇ = u − v = 0.
The trajectory makes a corner at the point (u(t2), v(t2)) = (−7,−23 − 4

√
2) of the line

v = v∗m at the moment t2 = t1 + log(1 + 2
√
2). The v-component achieves its minimum

vmin = −(697 + 64
√
2)/71 at the point (u(t3), v(t3)) = (vmin, vmin) of the nullcline u− v = 0 at

the moment t3 = t2 + 2 artanh(10 +
√
2)/49.

is the predator interference; σ is the efficiency of conversion of food to growth; and, the term

c(v) = γv

describes death of the predator with the death rate γ (all the parameters are positive). The
term h(t) describes the flow of the prey to some refuge patch from which it never returns.
System (12)-(13) is analagous to the two-patch predator-prey system proposed in [37], where
the safe patch is completely separated from the environment; alternatively, the term h(t) can
be considered as an additional predator-induced death rate.

We consider the flow rate in response to the change of predator abundance in the following
form:

h(t) =

(

k0 + k
d

dt
(P[η0]v)(t)− 2k†|v̇|(v − v†)

)+

, (14)

where we ensure that the flow satisfies h(t) ≥ 0 using the function x+ = max{x, 0}, and v̇
can be replaced with the right hand side of equation (13). The main ingredients here are
the constant flow rate k0 and the hysteretic reaction of the prey to variations of the predator
abundance, k d

dt
(P[η0]v)(t), where hysteresis appears due to a delay of the response of the prey

to a change of the trend in predator dynamics (i.e., the change of the sign of v̇). A specific
choice of the model for this hysteretic response in the form of the Preisach operator is related
to a number of phenomenological assumptions. Namely, the environment is divided into many
small interconnected patches, and it assumed that the change of the rate of flow of the prey to
the refuge from any given patch is delayed until the abundance of the predator drops/increases
from its extremum value by a certain positive amount, which is specific to the patch. More
detailed derivation of the model is presented in [37]. We assume that the measure µ(αR, αS) of
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the Preisach operator P[η0] is zero outside the triangle 0 ≤ αR ≤ αS ≤ 1, and µ(αR, αS) = 2
inside the triangle.

The additional term 2k†|v̇|(v− v†) in (14) strengthens the reaction of the prey to the change
of the predator abundance if v is below the threshold v†, and weakens this reaction if v is above
the threshold. In other words, the prey is attentive to the change of the predator numbers if the
predator is not abundant and its attention to the predator becomes saturated for v ≫ v†. This
artificial term is similar to the term we introduced in (7) and, indeed, allows us to demonstrate
numerically dynamics of (12)-(14), which are similar to dynamics of equations (2), (7). We will
consider the system with (k† > 0) and without (k† = 0) this term.

In the case of increasing v, substituting formula (5) in equations (14), we obtain the following
expression for the rate of flow to the refuge:

h(t) =
(

k0 + v̇(kH(v, vm)− 2k†(v − v†))
)+

, (15)

where v̇ can be replaced with the right hand side of equation (13). Similarly, when v decreases,

h(t) =
(

k0 + v̇(kV (v, vM ) + 2k†(v − v†))
)+

. (16)

Equilibria of system (12)-(14) can be found from the algebraic system, which is obtained by
setting the derivatives of all the variables, including d/dt(P[η0]v), to zero in (12)-(14).

Numerical examples of homoclinic orbits of system (12)-(14) presented in the next section
were obtained by an algorithm, which is similar to the method used in the previous section.

3.2. Numerical results

We set ρ = 1.35, φ = 0.1, β = 1.2, γ = 0.5, ω = 2, k0 = 0.01, λ = 0.01 to ensure that system
(12)-(14) has three positive equilibrium points

(u∗, v∗) = (0.183649, 0.245752), (17)

(u†, v†) = (0.340215, 0.45473), (18)

(u‡, v‡) = (133.376, 0.832085). (19)

If k = k† = 0 (the rate to the refuge (14) is constant, there is no hysteresis), then
these equilibrium points of the ordinary differential system (12)-(14) have the eigenvalues
(0.136, 0.614), (−0.089, 0.942), and (−1.33,−0.25), respectively. That is, the first equilibrium is
an unstable node, the second equilibrium is a saddle and the third equilibrium is a stable node.

When the hysteresis term is present (k > 0), we give a numerical evidence that equilibrium
(17) can have a homoclinic orbit attached to it. We consider a constant density function of the
Preisach operator (3),

µ(αR, αS) = 2,

in the triangle 0 ≤ αR ≤ αS ≤ 1 and set µ = 0 outside this triangle. The integral of µ over the
whole half plane αS ≥ αR is normalized to 1.

As the limit state of the Preisach operator, limt→−∞ η(t) = η∗, we choose the polyline Ω(t0)
which has two links: a vertical link Ωe(t0) = {(αR, αS) : αR = v∗, v∗ ≤ αS ≤ v∗M} and a
horizontal link {(αR, αS) : 0 ≤ αR ≤ v∗, αS = v∗M}, where v∗ is the second component of
equilibrium (17) (see Fig. 4, left, where the origin is shifted to the point αR = αS = v∗).

First, we consider system (12)-(14) with k = k† = 8000 and v† = 0.246 > v∗. The
parameter v∗M of the limit state for this example is set to v∗M = 1. We solve the ordinary
differential system (12), (13), (15) with vm = v∗ numerically backward in time using as the
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Figure 8. Homoclinic loop of system (12)-(14) with k = k† = 8000, v† = 0.246 and equilibrium
(17) at the point A.

initial value a point (u1, v1) = (v(t0), v(t0)) ≈ (0.248, 0.185) on the nullcline v̇ = 0. The
eigenvalues of the equilibrium (17) for this system are (0.136, 0.614). We check that v̇ > 0
for t < t0, and the solution (u(t), v(t)) approaches (u∗, v∗) as t decreases (see Fig. 8):
(v(t0 − 30), u(t0 − 30)) ≈ (v∗ + 3.55 × 10−6, u∗ + 5.61 × 10−5). Then we solve system (12),
(13), (16) with vM = v1 numerically forward in time for t ≥ t0 starting from the same initial
point (u1, v1). We observe that the solution (u(t), v(t)) approaches the equilibrium (u∗, v∗) and
v̇ < 0 for t > t0. The eigenvalues of the equilibrium (17) for this ordinary differential system
are (−5.73072,−0.0146083).

Next, we construct a homoclinic trajectory similar to the one shown on Fig. 7 for system
(12)-(14) with k† = 0, k = 700. The parameter of the limit state is set to v∗M = v1 = 0.2596.
As in the previous example, we solve system (12)-(13), (15) with vm = v∗ numerically backward
in time starting from the point (u1, v1) on the nullcline v̇ = 0 with v(t0) = v1, see Fig. 9.
This solution satisfies v̇ > 0 for t < t0. Then, we solve system (12)-(13), (16) with vM = v1 for
t > t0 starting from the same point (u1, v1). We observe that v(t) decreases, while the trajectory
spirals around the equilibrium (17) for t0 < t < t2a, where t2a ≈ t0 + 1.612, because (17) is a
stable focus for this ordinary differential system. However, for t = t2a, v(t2a) ≈ 0.25741 the flow
h(t) in (12) becomes 0; at this point, the term kv̇V (v, v1) is negative, and |v̇| becomes large
enough to compensate for the term k0 > 0 in relation (16). We observe that kv̇V (v, v1)+k0 < 0
and h(t) ≡ 0 for t2a < t < t2b, where t2b ≈ t0 + 11.043, v(t2b) ≈ 0.0384, and kv̇V (v, v1) + k0 = 0
at t = t2b. After this moment, h(t) becomes positive again. Shortly after this point, the v-
component of the solution reaches its (global) minimum v(t3) = v3 ≈ 0.0384 at t3 ≈ 11.046 as
the solution arrives at the nullcline v̇ = 0. From the nullcline, we continue the trajectory for
t > t3 as the solution of ordinary differential system (12)-(13), (15) with vm = v3. For this
system, the equilibrium (17) has the eigenvalues (−11.8176,−0.00708397) and the trajectory is
attracted to the equilibrium. The component v(t) increases and the term h(t) remains positive
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Figure 9. Homoclinic loop of system (12)-(14) with k† = 0, k = 700; the equilibrium (17) is
denoted by A.

for t > t3, see Fig. 9.

4. Conclusion

We have demonstrated the existence of robust families of homoclinic trajectories for operator-
differential equations (1), (2) with the Preisach hysteresis operator. These systems can be
considered as switching systems where switching from one planar ordinary differential equation
to another occurs when a variable either passes a turning point or achieves a value stored in the
memory state of the hysteresis operator. Homoclinic trajectories are possible when the basin
of attraction of an equilibrium of one planar system in forward time overlaps with the basin of
attraction of the equilibrium of another planar system in reversed time.
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