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Abstract. A new method to model the phenomena ’bursting’ and ’buffering’ in neural systems
is represented. Namely, a singularly perturbed nonlinear scalar differential difference equation
with two delays is introduced, which is a mathematical model of a single neuron. It is shown
that for suitably chosen parameters this equation has a stable periodic solution with an arbitrary
prescribed number of asymptotically high impulses (spikes) on a period interval. It is also shown
that the buffering phenomenon occurs in a one-dimensional chain of diffusively coupled neurons
of this type: as the number of components in the chain grows in a way compatible with a
decrease of the diffusion coefficient, the number of co-existing stable periodic motions increases
indefinitely.

1. Introduction
Self-sustained oscillations in neural systems have two characteristic features, the so-called
bursting phenomenon and the buffering phenomenon. The first consists of the alternation
of packets of pulses (strings of several spikes) and pieces of relatively moderate variation
of the membrane potentials. The second term is commonly used in situations when an
arbitrary prescribed number of co-existing attractors can be realized by an appropriate choice
of parameters of the corresponding dynamical system.

The bursting phenomenon has been considered by many authors (see, for instance,
[1, 2, 3, 4, 5] and the literature in these papers). To construct a mathematical model of this
phenomenon, authors usually use singularly perturbed systems of ordinary differential equations
with one slow and two fast variables, in which stable bursting-cycles (that is, periodic motions
exhibiting the bursting phenomenon) can exist under certain assumptions. However, there is
also another possible approach to this problem which is based on taking into account time delays.

The situation with the buffering phenomenon is somewhat different. Although it is quite
common for nonlinear models in various fields of natural sciences [6, 7, 8, 9, 10], it has never
got the appropriate attention in the neurodynamics literature. On the other hand this feature is
important for neural sciences: it reflects a competitive interaction between different concepts and
ideas in the neocortex part of human brain and can be used to explain the mechanisms behind
associative memory. Thus we arrive at the problem of realizing both the phenomena described
above in the framework of a single mathematical model. We put forward such a model in this
paper.
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2. Description of the Mathematical Model
First models of the dynamics of the electric potential of neurons are due to A.L. Hodgkin
and A.F. Huxley [11, 12], who presented a phenomenological model based on balance-type
relations such that (if the parameters have been suitably chosen) its dynamics is consistent with
experimental data about the oscillations of the membrane potentials of neurons.

Their model is quite complicated and many authors attempted to simplify it while preserving
the main characteristic features of neural dynamics. The surveys [3, 4] present a list of
requirements for a pulse neuron model and enumerated many model systems. The most
important of these requirements is that a model has a stable periodic pulse-type regime. Another
important condition is that the model must display the bursting phenomenon (for some values
of parameters).

To describe the new mathematical model of an spiking neuron we use the fundamental idea in
[11, 12] that a biological neuron can be replaced by an equivalent generator of electric oscillations.
We shall only take into account the potassium and sodium currents, and take the maximum
polarization level of the membrane for a reference point by assuming that u(t) ≥ 0 is the
deviation of the potential from this level. Then, discounting the leakage current, we can write
the current balance equations:

cu̇ = −INa − IK, (1)

where c > 0 is usually called the membrane capacity.
To construct a reasonable model we make several additional assumptions.

Assumption 1. We assume that the currents INa and IK can be represented as follows:

INa = −χNa(u) · u, IK = −χK(u) · u, (2)

where χNa(u) and χK(u) are functions characterizing the sodium and potassium conductance.

Assumption 2. We assume that χNa(0) = −α0 and χNa(u) → −β0 as u → +∞, where α0

and β0 are positive constants. We also assume that β0 > α0.

Assumption 3. We assume that χK(0) = α1 and χK(u)→ −β1 as u→∞, where α1 and β1

are positive constants, as above.

Assumption 4. We assume that the values of the potassium and sodium conductance lag
behind the current value of the membrane potential. We take the value of the first, potassium lag
for a unit of time and assume that the second lag is h ∈ (0, 1). Thus we have χK = χK(u(t− 1))
and χNa = χNa(u(t− h)).

Assumption 5. We assume that

χNa(0) + χK(0) > 0. (3)

We can present many arguments, biophysical and mathematical alike, in favour of these
assumptions. We start with biophysical considerations. Relations (2) ensure that u(t) is positive
(as it must be) and reflect the traditional approach to use Volterra-type equations for simulating
biophysical and ecological processes. We make the assumption that χNa(0) is negative because
for strong polarization (u � 1) there is a surplus of sodium ions on the inner surface of the
membrane. Pumping them out of the cell is what ion transporters are for (see [12]). Since
sodium ions are positively charged, this process reduces the membrane potential, so χNa(u) < 0
for u � 1. Now we go over to the behaviour of χK(u). When polarization is strong, the flow
of potassium ions is directed inside the cell thus contributing to the growth of the membrane
potential, so χK(u) > 0 for u� 1. However, after passing the peak of the potential, the flow of
potassium ions changes direction. Hence there exists a level of the potential such that χK(u) < 0
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for values of u higher than this level. Thus we arrive at Assumption 3. As regards Assumption 4,
we can only say that a conductance time lag is an important feature of ion channels, which
must therefore be taken into account. And as regards inequality (3), it reflects the fact that
when polarization is strong, the membrane potential is increasing. On the mathematics level,
Assumptions 1–5 ensure that all the requirements for neural models stated above are fulfilled.
Namely, we show below that equation (1) has periodic pulse regimes with an arbitrary prescribed
number of pulses on a period interval.

Under the Assumptions 1–5, from (1) we obtain

cu̇ = [χNa(u(t− h)) + χK(u(t− 1))]u. (4)

It is easy to see that for h = 1 the model (4) reduces to the generalized Hutchinson equation,
which was thoroughly investigated in [13]. Note that a model with one delay was constructed
in [14] in a similar way.

For further analysis we reduce (4) to a more convenient form. To do this we set

χNa(u) = (χK(0) + χNa(0))f(u)−χK(0), χK(u) = χK(0)− (χK(0) + χNa(0))g(u),

λ = (χK(0) + χNa(0))/c.
(5)

Then we obtain the equation

u̇ = λ[f(u(t− h))− g(u(t− 1))]u. (6)

As previously, here u(t) > 0 is the membrane potential of a neuron. The positive parameter
λ characterizes the speed of electric processes in the system, so it must be large; and h is a
fixed parameter in the interval (0, 1). As concerns the functions f(u), g(u) ∈ C1(R+), where
R+ = {u ∈ R : u ≥ 0}, in accordance with Assumptions 1–5 and equalities (5) we assume that
they have the following properties:

f(0) = 1, g(0) = 0; f(u) = −a0 +O(1/u), uf ′(u) = O(1/u), u2f ′′(u) = O(1/u),

g(u) = b0 +O(1/u), ug′(u) = O(1/u), u2g′′(u) = O(1/u) as u→ +∞,
(7)

where a0 = −α1 − β0

α1 − α0
and b0 =

α1 + β1

α1 − α0
are positive constants. Examples of such functions are

given by
f(u) = (1− u)/(1 + c1u) and g(u) = c2u/(1 + u), c1, c2 = const > 0. (8)

The main results of this paper concern relaxation properties of equations (6) and systems
of coupled equations of this type. It is important to note that the model we obtain is quite
meaningful: for parameters chosen appropriately it has regimes with a single spike on a period
interval (for example, for h = 1), as well as regimes with any prescribed number of such spikes.
In particular, we shall see that for any fixed positive integer n we can pick parameters h, a0,
and b0 in (6) and (7) such that for any sufficiently large λ equation (6) has an exponentially
orbitally stable cycle u = u∗(t, λ) with period T∗(λ), where T∗(λ) approaches a finite limit T∗ > 0
as λ → ∞. Furthermore, on an interval of length T∗(λ) the function u∗(t, λ) shows precisely
n asymptotically high impulses (of order exp(λh)) with duration ∆t = (1 + 1/a0)h following
one another, and u∗ is asymptotically small for the rest of time. In other words, u∗(t, λ) is a
bursting-cycle for this choice of parameters.

We get a graphic impression of the relaxation properties of the bursting-cycle u∗(t, λ) from
its graph in the plane (t, u) (see Figure 1), which is plotted to scale 1 : 25 in the case of h = 1/26
and λ = 130 for the functions in (8) with c1 = 0.5 and c2 = 4.
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Figure 1. Stable periodic solution u∗(t, λ) of equation (6) for h = 1/26 and λ = 130 for the
functions in (8) with c1 = 0.5 and c2 = 4

As we have already said, (6) is a mathematical model of an isolated neuron. Now let us
look at a one-dimensional chain of m such neurons, m ≥ 2, each of which interacts with its two
immediate neighbours. Then instead of (6) we obtain the system

u̇j = d (uj+1 − 2uj + uj−1) + λ[f(uj(t− h))− g(uj(t− 1))]uj , j = 1, . . . ,m, (9)

where u0 = u1, um+1 = um, and the parameter d > 0, which has the order of 1, characterizes the
strength of coupling between neurons. Clearly, system (9) possesses the so-called homogeneous
(or synchronous) cycle

u1 ≡ . . . ≡ um = u∗(t, λ), (10)

where u∗(t, λ) is the stable periodic solution of (6). Our central result claims that for
suitably decreased d and all λ � 1 this system has at least m exponentially orbitally stable
inhomogeneous periodic motions (apart from the stable cycle (10); recall that m is the order of
the system). We call each of these motions a discrete autowave process, or simply an autowave.

System (9) is the required mathematical model, in which buffering and the bursting
phenomenon occur at the same time. In fact, we show below that all the m stable autowaves
in this system are bursting-cycles. This means that each component uj of an autowave,
j = 1, . . . ,m, displays the same asymptotic behaviour as u∗(t, λ) on a period interval. For
each positive integer n we can pick parameters a0, b0, and h such that each of these components
shows precisely n asymptotically high impulses on a period interval for these values of the
parameters.

3. Relaxation Properties of a Single Neuron
In this section we investigate the question whether equation (6) has a stable relaxation bursting-
cycle. In (6) we make the substitution u = exp(λx), which takes this equation to the form

ẋ = F (x(t− h), ε)−G(x(t− 1), ε), (11)
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where F (x, ε) = f(exp(x/ε)) and G(x, ε) = g(exp(x/ε)), ε = 1/λ � 1. It follows from the
properties (7) of the functions f(u) and g(u) that

lim
ε→ 0

F (x, ε) = R(x), lim
ε→ 0

G(x, ε) = H(x), R(x) =

{
1 for x < 0,

−a0 for x > 0,

H(x) =

{
0 for x < 0,

b0 for x > 0.

(12)

Relations (12) allow us to proceed from (11) to the limiting relay equation with delays

ẋ = R(x(t− h))−H(x(t− 1)). (13)

As in [13, 15, 16], we define the notion of a solution to (13) in a constructive way. To do this
we fix an arbitrary positive integer n and assume that the parameters h, a0, and b0 in (6) and
(7) satisfy

1

(n+ 1)(2 + a0 + 1/a0)
< h <

1

n(2 + a0 + 1/a0) + 2 + 1/a0
, (14)

b0 > 1 + a0. (15)

Next we fix a sufficiently small σ0 > 0 (we indicate an upper bound for σ0 in what follows),
consider the set of functions

ϕ ∈ C[−1− σ0,−σ0], ϕ(t) < 0

for t ∈ [−1− σ0,−σ0], ϕ(−σ0) = −σ0
(16)

and let xϕ(t), where t ≥ −σ0, denote the solution of (13) with an arbitrary initial function (16).
Concerning the integration of (13) we note that the right-hand side of this equation is a

piecewise constant function, which changes value only when x(t − h) or x(t − 1) changes sign.
In particular, for −σ0 ≤ t ≤ −σ0 + h we have simultaneously ϕ(t − h) < 0 and ϕ(t − 1) < 0.
Hence by (13) and (16) the function xϕ(t) solves the Cauchy problem ẋ = 1, x(−σ0) = −σ0 on
this interval of time, and therefore

xϕ(t) = t. (17)

It is also clear that (17) holds as long as xϕ(t − h) < 0 and xϕ(t − 1) < 0. Thus, it also holds
for −σ0 ≤ t ≤ 0.

In view of our constructions, for 0 ≤ t < 1 we have xϕ(t− 1) < 0, so that H(xϕ(t− 1)) = 0.
Hence the solution xϕ(t) satisfies the auxiliary equation

ẋ = R(x(t− h)) (18)

on this interval. As regards equation (18), its properties were thoroughly analyzed in [13], where
it was shown, in particular, that if a solution x(t) of this equation satisfies x(0) = 0 and x(t) < 0
for −h ≤ t < 0 then for t ≥ 0 it must coincide with the periodic function

x0(t) =


t for 0 ≤ t ≤ h,

h− a0(t− h) for h ≤ t ≤ t0 + h,

−a0h+ t− t0 − h for t0 + h ≤ t ≤ T0,

x0(t+ T0) ≡ x0(t), (19)

where t0 = h(1 + 1/a0) and T0 = h(2 + a0 + 1/a0). Returning to (13) and taking into account
all the above we arrive at the equality

xϕ(t) = x0(t), 0 ≤ t ≤ 1. (20)
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For further analysis we require the special function y0(t) solving the Cauchy problem

ẋ = 1−H(x0(t)), x|t=0 = 0. (21)

In view of (19), it is easy to see that for t ≥ 0 this function is given by the relations

y0(t) =

{
−(b0 − 1)t for 0 ≤ t ≤ t0,
t− b0t0 for t0 ≤ t ≤ T0,

y0(t) = (k − 1)(T0 − b0t0)+

+ y0(t− (k − 1)T0) for (k − 1)T0 ≤ t ≤ kT0, k ∈ N, k ≥ 2.

(22)

We note that condition (15) ensures the following properties of y0:

y0(t) < 0 ∀ t ≥ 0, lim
t→+∞

y0(t) = −∞. (23)

Now we consider the next time interval 1 ≤ t ≤ 1 + h. Note that because of (14), t = 1 lies
in the interval (nT0 + t0 + h, (n+ 1)T0). Hence, from (19) and (20) we obtain xϕ(t− h) < 0 for
t ∈ [1, 1 +h], so that the function xϕ(t) solves a Cauchy problem similar to (21) on this interval:

ẋ = 1−H(x0(t− 1)), x|t=1 = x0(1).

Hence, for 1 ≤ t ≤ 1 + h we conclude that

xϕ(t) = x0(1) + y0(t− 1). (24)

In the next step we observe that if we know a priori that

xϕ(t− h) < 0 (25)

then (24) also holds for 1 ≤ t ≤ 2. However, (25) holds indeed because, by (14) and (19)

x0(1) = x0(1− nT0) = 1− (n+ 1)T0 < 0 (26)

and from (23) we obtain y0(t− 1) < 0 for t ≥ 1. Thus (24) holds for 1 ≤ t ≤ 2.
For t ≥ 2 we shall assume by (25) that we have the a priori estimate

xϕ(t− 1) < 0. (27)

Then the solution xϕ(t) in question solves the Cauchy problem

ẋ = 1, x|t=2 = x0(1) + y0(1),

so that it can be defined by the formula

xϕ(t) = t− T∗, T∗ = (n+ 1)(T0 + b0t0), (28)

which follows from (22) and (26). It remains to add that by (24) and (28) the a priori assumptions
(25) and (27) are certainly valid on the interval 2 ≤ t ≤ T∗, and by the inequality T∗ − 2 > 0
(following from (14) and (15)) this interval has positive length.

Now we will assume that the parameter σ0 (see (16)) satisfies

σ0 < (n+ 1)T0 − 1. (29)
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Figure 2. Function x∗(t) for a0 = 2, b0 = 4, and h = 1/26 (inequalities (14) with n = 5 hold
for these values of the parameters)

Then it follows from the above constructions that xϕ(t+ T∗), −1− σ0 ≤ t ≤ −σ0, is a function
of the set (16) and the equation xϕ(t − σ0) = −σ0 has precisely 2n + 2 zeros on the interval
(0, T∗]. Thus for t ≥ −σ0 each solution xϕ(t) with initial condition (16) coincides with the same
T∗-periodic function

x∗(t) =


x0(t) for 0 ≤ t ≤ 1,

x0(1) + y0(t− 1) for 1 ≤ t ≤ 2,

t− T∗ for 2 ≤ t ≤ T∗,
x∗(t+ T∗) ≡ x∗(t). (30)

We show the graph of this function for a0 = 2, b0 = 4, and h = 1/26 in Figure 2 (inequalities
(14) with n = 5 hold for these values of the parameters).

Now we consider the connections between periodic solutions of (11) and (13). We have the
following result.

Theorem 3.1. For all sufficiently small ε > 0 equation (11) has a unique orbitally exponentially
stable cycle x∗(t, ε), x∗(−σ0, ε) ≡ −σ0, whose period T∗(ε) satisfies the limit relations

lim
ε→ 0

T∗(ε) = T∗, lim
ε→ 0

max
0≤t≤T∗(ε)

|x∗(t, ε)− x∗(t)| = 0.

We omit the full proof of this theorem and refer the reader to [13, 16] for technical details.
We only present the scheme of the proof.

Apart from the constant σ0 satisfying (29), we also fix q1 > σ0 and q2 ∈ (0, σ0) and
let S(σ0, q1, q2) ⊂ C[−1 − σ0,−σ0] denote the closed bounded set of functions ϕ satisfying
the conditions −q1 ≤ ϕ(t) ≤ −q2 and ϕ(−σ0) = −σ0. Then for an arbitrary function
ϕ ∈ S(σ0, q1, q2) we look at the solution x = xϕ(t, ε), t ≥ −σ0, of equation (11) with the
initial condition x = ϕ(t) for −1− σ0 ≤ t ≤ −σ0. We denote by t = Tϕ the (2n+ 2)nd positive
root of the equation xϕ(t−σ0, ε) = −σ0 (we assume that this equation has at least 2n+ 2 roots
on the half-axis t > 0, which are numbered in ascending order). Finally, we define the Poincaré
first return operator Πε : S(σ0, q1, q2)→ C[−1− σ0,−σ0] by

Πε(ϕ) = xϕ(t+ Tϕ, ε), −1− σ0 ≤ t ≤ −σ0. (31)
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The rest of the scheme is standard (see [13] and [16]). First we prove that the solution
xϕ(t, ε), is asymptotically close to x∗(t) as ε→ 0 uniformly with respect to ϕ ∈ S(σ0, q1, q2)
and t ∈ [−σ0, T∗ − σ0/2]. This implies that for appropriately chosen parameters σ0, q1, and q2

the operator (31) is defined on the set S(σ0, q1, q2) and transforms it into itself. It remains to
analyse the variational equation along the solution xϕ(t, ε) and to verify that Πε is a contraction
operator.

Additionally to Theorem 3.1, we point out that the relaxation cycle

u∗(t, λ) = exp
(
x∗(t, ε)/ε

)∣∣
ε=1/λ

(32)

of equation (6) has the required asymptotic features of a bursting-cycle. In fact, its period T∗(λ)
satisfies lim

λ→∞
T∗(λ) = T∗. Moreover, the cycle (32) shows n + 1 successive asymptotically high

impulses (of the order of exp(λh)) on the interval 0 ≤ t ≤ T∗(λ). These spikes correspond to the
intervals kT0 < t < t0 + kT0, k = 0, 1, . . . , n, on which the function in (30) is positive. On the
other hand, if t is a fixed moment of time in the set [0, T∗) \

⋃n
k=0[kT0, t0 + kT0], then u∗(t, λ)

has order exp(−λq), where q = const > 0.

4. Relaxation Properties of Neural Chains
Now we turn to system (9), where we assume, as before, that the parameters a0, b0, and h satisfy
(14) and (15). For the analysis of this system we introduce new variables x, y1, . . . , ym−1:

u1 = exp(x/ε), uj = exp

(
x/ε+

j−1∑
k=1

yk

)
, j = 2, . . . ,m, ε = 1/λ� 1. (33)

Substituting (33) into (9) we obtain the relaxation system

ẋ = εd (exp y1 − 1) + F (x(t− h), ε)−G(x(t− 1), ε),

ẏj = d [exp yj+1 + exp(−yj)− exp yj − exp(−yj−1)]+

+Fj(x(t− h), y1(t− h), . . . , yj(t− h), ε)−Gj(x(t− 1), y1(t− 1), . . . , yj(t− 1), ε),

j = 1, . . . ,m− 1,

(34)

where y0 = ym = 0, the functions F and G are as in (11), and the functions Fj and Gj have the
following form:

Fj(x, y1, . . . , yj) =
1

ε

[
f

(
exp

(
x/ε+

j∑
k=1

yk

))
− f

(
exp

(
x/ε+

j−1∑
k=1

yk

))]
,

Gj(x, y1, . . . , yj) =
1

ε

[
g

(
exp

(
x/ε+

j∑
k=1

yk

))
− g
(

exp

(
x/ε+

j−1∑
k=1

yk

))]
.

Let us fix a positive constant σ0 satisfying (29). Next we introduce at the interval
−σ0 ≤ t ≤ T∗ − σ0, where T∗ is the quantity in (28). For z = (z1, . . . , zm−1) ∈ Rm−1 let
y0

1(t, z), . . ., y0
m−1(t, z) denote the components of the solution of the impulse system

ẏj = d [exp yj+1 + exp(−yj)− exp yj − exp(−yj−1)],

j = 1, . . . ,m− 1, y0 = ym = 0;
(35)
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yj(h+ kT0 + 0) = yj(h+ kT0 − 0)− (1 + a0)yj(kT0),

yj(t0 + h+ kT0 + 0) = yj(t0 + h+ kT0 − 0)− (1 + 1/a0)yj(t0 + kT0),

yj(1 + kT0 + 0) = yj(1 + kT0 − 0)− b0yj(kT0),

yj(1 + t0 + kT0 + 0) = yj(1 + t0 + kT0 − 0)− (b0/a0)yj(t0 + kT0),

k = 0, 1, . . . , n, j = 1, . . . ,m− 1,

(36)

which satisfies the initial condition

(y1, . . . , ym−1)
∣∣
t=−σ0 = (z1, . . . , zm−1) (37)

and is defined on this interval. Finally, we consider the map

z → Φ(z)
def
= (y0

1(t, z), . . . , y0
m−1(t, z))

∣∣
t=T∗−σ0 (38)

from Rm−1 to Rm−1.

Theorem 4.1. To each fixed point z = z∗ of the map (38) which is exponentially
stable or dichotomous there corresponds for sufficiently small ε > 0 a relaxation cycle
(x(t, ε), y1(t, ε), . . . , ym−1(t, ε)) of system (34) with the same stability properties and which
satisfies x(−σ0, ε) ≡ −σ0 and has period T (ε). Furthermore,

lim
ε→0

T (ε) = T∗, max
−σ0≤t≤T (ε)−σ0

|x(t, ε)− x∗(t)| = O(ε),

lim
ε→0

max
t∈Σ(ε)

|yj(t, ε)− y0
j (t, z∗)| = 0, max

−σ0≤t≤T (ε)−σ0
|yj(t, ε)| ≤M, j = 1, . . . ,m− 1,

(39)

where x∗(t) is the function in (30), M = const > 0, and Σ(ε) is the interval [−σ0, T (ε) − σ0]
from which the subintervals

(h+ kT0 − εδ, h+ kT0 + εδ), (t0 + h+ kT0 − εδ, t0 + h+ kT0 + εδ),

(1 + kT0 − εδ, 1 + kT0 + εδ), (1 + t0 + kT0 − εδ, 1 + t0 + kT0 + εδ), k = 0, 1, . . . , n,

δ = const ∈ (0, 1)

have been removed.

We omit the proof of this theorem since for quite similar situations it was presented in [17]
with details.

Theorem 4.1 is of fundamental nature as it reduces the problem of finding discrete autowave
processes in system (9) to the problem of identifying stable fixed points of the map (38). We can
represent this map in an invariant form, independent of the choice of σ0. Let P t(z), z ∈ Rm−1,
P 0(z) = z, be the shift operator along the trajectories of system (35). It is easy to see that after
the change of variables P σ0(z)→ z the map (38) takes the invariant form

z → Φ0(z)
def
= (y0

1(t, z), . . . , y0
m−1(t, z))

∣∣
t=T∗

, (40)

where (y0
1(t, z), . . . , y0

m−1(t, z)) is the solution of the impulse system (35), (36) with the initial
condition (z1, . . . , zm−1) for t = 0 (analogous to (37)).

We start the investigation of attractors of the map (40) by analysing the stability properties
of its fixed point z = 0. We establish the following result by simple verification.

Theorem 4.2. There exists a sufficiently small d0 > 0 such that for all d ∈ (0, d0] the fixed
point z = 0 of the map (40) is exponentially stable.

MURPHYS-HSFS-2014 IOP Publishing
Journal of Physics: Conference Series 727 (2016) 012004 doi:10.1088/1742-6596/727/1/012004

9



Corresponding to the fixed point z = 0 there is a cycle of system (34) with components
x = x∗(t, ε), yj ≡ 0, j = 1, . . . ,m− 1, where x∗(t, ε) is the periodic solution of (11) established
by Theorem 2.1. In system (9) the same point corresponds to the homogeneous cycle (10),
where u∗(t, λ) is the function (32). Theorems 4.1 and 4.2 imply that this cycle is exponentially
orbitally stable for each fixed d ∈ (0, d0] and all sufficiently large λ.

Now we look for stable fixed points of the map (40) which are distinct from z = 0 under the
assumption d� 1. In this case we can asymptotically integrate (35), (36) for 0 ≤ t ≤ T∗ and

(a0, b 0) ∈ U1 ∪ U2 ∪ U3, (41)

where

U1 = {(a0, b0) : a0 > 1, a0 + 1 < b0 < 2a0}, U2 = {(a0, b0) : a0 > 1, b0 > 2a0},
U3 = {(a0, b0) : 0 < a0 < 1, b0 > a0 + 1}.

Then we get the following result.

Theorem 4.3. Let h, a0, and b0 be fixed parameters satisfying (14) and (41). Then for all
sufficiently small d > 0 the map (40) has m exponentially stable fixed points

Or0(d) = (z1,r0(d), z2,r0(d), . . . , zm−1,r0(d)), r0 = 0, 1, . . . ,m− 1, (42)

such that for (a0, b0) ∈ U1 their location is determined by the asymptotic behaviour

zj,r0 = −b0 − a0

a0
ln

1

d
+O(1), j = 1, . . . , r0;

zj,r0 =
b0 − a0

a0
ln

1

d
+O(1), j = r0 + 1, . . . ,m− 1

(43)

as d→ 0, while for (a0, b0) ∈ U2 ∪ U3 their asymptotic behaviour is as follows:

zj,r0 = − ln
1

d
+O(1), j = 1, . . . , r0; zj,r0 = ln

1

d
+O(1), j = r0 + 1, . . . ,m− 1, (44)

as d→ 0.

We do not justify this result here and refer the reader to [18], which contains the proof in a
quite similar case.

Theorem 4.1 leads in combination with the asymptotic properties of the map (40) (see
Theorems 4.2 and 4.3) to the main result of this paper.

Theorem 4.4. Let h, a0, and b0 be fixed parameters satisfying (14) and (41). Then for any
sufficiently small d1 and d2, d2 > d1 > 0, there exists a sufficiently large λ0 = λ0(d1, d2) > 0
such that for d1 ≤ d ≤ d2 and λ ≥ λ0 the system of m equations (9) has at least m exponentially
orbitally stable spatially inhomogeneous cycles co-existing with the stable homogeneous cycle (10).

It follows from this theorem that when we decrease d and when we increase λ and the number
m of neurons in an appropriate way then the buffer phenomenon occurs in (9): the number of
co-existing stable cycles increases unbounded. Moreover, all these cycles display the bursting
phenomenon. In fact, by (39) each of these cycle has components uj , j = 1, . . . ,m, with the
asymptotic representation uj = exp(λx∗(t) + O(1)) as λ → ∞, j = 1, . . . ,m, which holds
uniformly with respect to t ∈ [0, T (ε)], where x∗(t) is the function in (30). Hence, the graphs
of the uj are similar in shape to the graph in Figure 1, that is, they contain a string of n + 1
spikes. To any given natural number n the parameters h, a0, and b0, we can be chosen select
appropriately.

For example, on Figure 3 for m = 5 we show a graphs of components of one of the five
coexistent stable periodic solutions of system (9) (parameter values are the same as above,
h = 1/26, λ = 130, c1 = 0.5 and c2 = 4).
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Figure 3. Components u1(t), . . . , u5(t) of the stable periodic solution of system (9) for m = 5,
h = 1/26 and λ = 130 for the functions in (8) with c1 = 0.5 and c2 = 4

5. Conclusion
Mathematical results presented in the paper show that our new model (9) of single neuron
operation combines simplicity of its form with rich dynamical properties. We show that this
model can describe such fundamental neurodynamical phenomena as bursting-effect and buffer
phenomenon.

Historically main attention of researchers was paid to ”bursting behavior”. This is not the
case for buffer phenomenon. Although this phenomenon is one of the fundamental laws of
operation of nonlinear systems from different fields [9, 10], it is still not properly described in
neurodynamical literature. At the same time it is clear that buffer phenomenon is important
for neuron subjects as it can be useful in describing the associative memory. We shall discuss
this in detail.

According to [19, 20] in the simplest case associative memory operates like is shown on fig. 4.
That is, there exist some storage medium implemented as a neuron system and storing blocks
of data Rn, n = 1, 2, . . . , n0. Next, in order to obtain from system a certain result Rn it is
necessary to feed to its input the corresponding symbolic key Kn and a certain additional data
Cn referred to as context.

Now assume that storage medium mentioned above is described by equation (6) or by system
of coupled equations of the form (9). Next, let parameters of this system be taken so that it
permits n0 coexistent stable cycles enumerated with n = 1, 2, . . . , n0. Finally, assume that with
every such cycle connected is a corresponding data block Rn.

The operation of mathematical model described above is clear: in order to receive the
necessary data Rn, we have to keep the system in a stable periodic regime with number n.
This can be fulfilled by introducing the key Kn = n and additional context Cn. We take as Cn
the initial conditions of mentioned periodic regime.
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Figure 4. Model of memory with associative access

We should particularly mention the following feature. All the results presented in the paper
hold for more general forms of f(u), g(u) from (9). That is, we can assume that as u → +∞,
instead of (7) the following asymptotic equalities are valid

f(u) = −a0 +O(1/uγ1), uf ′(u) = O(1/uγ1), u2f ′′(u) = O(1/uγ1),

g(u) = b0 +O(1/uγ2), ug′(u) = O(1/uγ2), u2g′′(u) = O(1/uγ2)

for arbitrarily fixed γ1, γ2 > 0.
Now we dwell on several unsolved problems. It might be interesting to look at the neural

chain (9) for other boundary conditions. For example, we can set u0 = um+1 = 0 (Dirichlet-
type conditions) or u0 = um, um+1 = u1 (periodicity conditions). The question of autowave
regimes in 2-dimensional lattices of diffusively coupled neurons of the form (6) is also of interest.
Finally, it is still an open question whether the buffering phenomenon survives the transition
from discrete chains (9) to the corresponding distributed model, when we set d = m2D with
D = const > 0 and let m→∞.
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