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Abstract. Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces
without the assistance of, and in opposition to, external forces like gravity. Three effects contribute
to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus
formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during
one cycle of capillary action, when the liquid volume inside a capillary tube first increases and
subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us
to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus.
It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of
energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the
flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant
temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We
describe the numerical solution of these equations and present results from computations for the
case of a capillary tube with 1 mm diameter.

1. Introduction
Capillarity and wetting phenomena play prominent roles in soil science, plant biology, surface
physics, and hence, both fields gain more attention from researchers in various areas like chemistry,
physics, and engineering. Studies on wetting phenomenon mainly look at how liquid spreads on
a solid surface. Industrial processes, such as cleaning, painting, coating, and adhesion [1] widely
use the key concepts of wetting. As an example, in the automobile industry, surfaces are prepared
prior to painting, and tires are treated to promote adhesion on wet roadways.

The surface chemistry of a solid substrate is the key factor in determining its wetting behavior;
hence, the specific wetting properties can be obtained by modifying the surface chemistry. At large
scales, research on wetting properties of a liquid is used to increase the deposition efficiency of
pesticides on plant leaves and the cooling of industrial reactors. On smaller scales, it is used to
improve the efficiency of microfluidic and nanoprinting devices [2].

Capillarity is the study of the interface between two immiscible fluids, or between liquid and
air. These interfaces change their shape to minimize the surface energy [3]. The two fundamental
equations that describe the macroscopic theory of capillary surfaces are the Young-Laplace equation
and the Kelvin equation. The wetting of a solid surface by a liquid in the presence of vapor is
described by Young’s equation [4].
• The Young-Laplace equation describes the shape of a capillary interface. When a curved

capillary interface is in equilibrium, a pressure difference, δp, forms across the interface. Young-
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Laplace equation relates the pressure deficiency to the curvature of the interface, and it reads

δp = 2γLGH, (1)

where H denotes the mean curvature of the interface [3].
• Lord Kelvin’s equation describes the evaporation or condensation of liquid from a capillary

surface. In particular, this equation describes the change in the pressure of the vapor as a
function of the temperature. This change in the vapor pressure leads to a change in the shape
of the capillary surface in accordance with the Young-Laplace equation.
• Young’s equation describes the boundary condition at the three phase line where a capillary

surface meets a solid surface.
Consider a liquid drop on a solid substrate, where one encounters three different interfaces:
solid-liquid (SL), solid-gas (SG), and liquid-gas (LG). We assume that the contact line is a
differentiable function so that one may assign a tangent direction at any point. We also assume
that the solid and liquid surfaces are differentiable so that we may assign normal directions at
any point. The contact angle θ between the solid and the liquid is defined to be (please refer
to Figure 1) as the angle between the normal vectors to the solid and the liquid at a point on
the contact line [5].

(a)
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Figure 1: (a) Geometric definition of the contact angle for a 3-D droplet on a solid substrate [5]:
νS is the normal to the solid substrate at the contact line, and νf is the normal to the droplet
surface at the contact line. The angle between νS and νf is the contact angle. On the tangent
plane to the solid substrate, let νSG be the unit vector perpendicular to the contact line pointing
away from the wetted region. The vector νSL = −νSG is the unit vector pointing into the wetted
region. On the tangent plane to the capillary interface at the contact point, let νLG be the unit
vector perpendicular to the contact line pointing away from the solid. (b) Forces per unit length of
magnitude γSG, γSL, and γLG respectively act along the unit directions νSG, νSL, and νLG. Force
balance in the νSG direction yields the Young equation.

Forces per unit length of magnitude γSL, γSG, and γLG act along certain directions
perpendicular to the contact line as described in Figure 1(b). Balancing the forces on the
tangent plane to the solid surface yields Young’s equation [3]:

γSG − γSL = γLG cos θ. (2)

The contact angle, θ, is not simply the tangential angle at the point of contact. In the region
of the triple-point line (the line of contact between the substrate, air, and liquid), the liquid
exhibits three distinct regions: the molecular region, the transition region, and the capillary
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region [6]. It is at the transition region where one should measure the angle of contact. The
angle that the transition region makes with the substrate is the contact angle to be used in the
Young’s law [7]. This subtlety in the notion of the contact angle will be important in Section
2.2. The scalar quantities γSL, γSG, and γLG can also be understood as the energies of the
interfaces per unit area.

In this article, we continue the work presented in [8] and compute the energy that must be
expended by an external agent while changing the volume of a liquid column in a capillary tube
through one cycle. The liquid volume itself could be changed slowly by changing the temperature of
the system through Kelvin’s effect described earlier. The very fact that a liquid column exists in a
vertical capillary tube implies that the angles at the upper and lower menisci have different contact
angle values. This is only possible due to the contact angle hysteresis phenomenon described next.

1.1. Contact angle hysteresis
Consider a liquid droplet on a solid surface with a contact angle of θ (Fig. 2). Experiments show
that if the liquid is carefully added to the droplet via a syringe, the volume and contact angle of
the droplet will increase without changing its initial contact area. Further increase of its volume
results in an increase in the contact area with the contact angle fixed at θA (refer to Fig. 2(a)).
Similarly, if the liquid is removed from a droplet, volume and contact angle of the droplet decrease
but retain the same contact area. Continuing this process results in a recession of the contact area
at a contact angle of θR. These two limiting values, θA and θR, are referred to as advancing and
receding angles. For a symmetric droplet, one can obtain a hysteresis diagram for the contact angle
θ verses droplet diameter D as depicted in Figure 2 (b).

(a) (b)

Figure 2: (a) Contact angle hysteresis effect: advancing θA, and receding θR contact angles of a
liquid drop. (b) Plot of the contact angle θ verses contact diameter D for a drop on a solid surface.

1.2. Effect of surface chemistry and roughness
The contact angle θ at the contact line may be found by solving (2). It has been known since
the work of H. L. Sulman and H. Picard [9] that there is a difference in the contact angle at the
solid-liquid-gas contact line between rising drops and falling drops. They called this phenomenon
contact angle hysteresis. The amount of hysteresis depends on the chemical compositions of the
solid and the liquid, and the physical roughness of the solid surface [10]. Several researchers have
shown that even for solids with surface height variation in the nanometers and drop sizes that are
2 or 3 orders of magnitude larger, there is still significant contact angle hysteresis [11, 12, 13, 14].
These results show that the solid-liquid chemistry is the primary reason for contact angle hysteresis.
The same experiments have also shown that increase of surface roughness changes the amount of
contact angle hysteresis but in a consistent manner [10, 15].
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As experiments have pointed out that the primary reason for contact angle hysteresis is the
chemistry between the solid and liquid, the practice of assigning only a single value for the interfacial
energy γSL was questioned by Penn and Miller [12]. Recently, Snoeijer and Andreotti [16] have
shown through a theoretical analysis at the microscopic level of a liquid drop on a smooth surface
with no surface roughness and with no chemical impurities that the macroscopic (or apparent)
contact angle cannot have a single value. Extrand[17] started with the assumption that the
advancing and receding contact angles are known and concluded that the interfacial energy of
the solid-liquid must be set valued if the angles are different.

Due to the above mentioned reasons, we assume γSL takes values in the set [γSLmin , γSLmax ]. In
the next section, we follow the theory outlined in [8] to derive the equations satisfied by a finite
column of liquid in a capillary tube.

1.3. Derivation of equations
We obtain the governing equations for a capillary surface by minimizing the total energy of the three-
phase system (solid-liquid-gas) in a capillary tube for a constant liquid volume and temperature,
while subject that γSL ∈ [γSLmin , γSLmax ] [8]. Consider a capillary surface formed between a three-
phase system: liquid, gas, and a solid boundary. Let the domain occupied by the liquid be Ω and
the domain of the capillary interface be S. Further, Sw denotes the area of the wetted part of the
solid boundary. The total energy of this system consists of three main terms [18]:
(i) Free surface energy,

(ii) Wetting energy, and
(iii) Gravitational potential energy.

The free surface energy, Ef , of a capillary interface is proportional to the area of the liquid
surface that is not in contact with the solid. Then, if the energy per unit area (surface tension) is
γLG,

Ef = γLG

∫
S

dS. (3)

In equation (3), dS represents the surface area element on the capillary interface. In equation (4),
wetting energy, Ew, is the adhesion energy between the liquid and the solid substrate, and

Ew =

∫
Sw

(γSL − γSG) dSw. (4)

Note that in this quantity, γSL is not a constant function. Finally, the gravitational potential
energy, Eg, in terms of the height coordinate z and volume element dV is

Eg =

∫
Ω

ρg z dV, (5)

where ρ and g are the liquid density and gravitational acceleration, respectively. The total
Helmholtz energy at constant temperature of the system is then given by:

Etot = Ef + Ew + Eg. (6)

One obtains equations for the capillary surfaces and the boundary conditions at the contact line
from first-order necessary conditions arising from the minimization of the total energy functional
subject to a constant liquid volume constraint and γSL ∈ [γSLmin , γSLmax ].
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2. Liquid column in a capillary tube: Effect due to the contact angle hysteresis
Experiments suggest that a thin, vertical capillary can hold a finite column of liquid. Consider a
liquid column trapped in a capillary tube with radius R. Let θ1 and θ2 be the equilibrium contact
angles of the upper and lower menisci, respectively. Hence, for the static equilibrium of the liquid
column, it satisfies the equation:

2πRγLG(cos θ1 − cos θ2) = ρ g V, (7)

where γLG is the interfacial tension between the liquid-gas interface, and ρ, V denote the density
and volume of the liquid respectively. Thus, the existence of such a capillary column implies that
the equilibrium contact angles θ1 and θ2 satisfy θ1 < θ2.

Given V , to find the angles θ1 and θ2, we mathematically model the capillary menisci formed
in a liquid column trapped in a cylindrical tube. As our goal is to find concrete values for energy
losses for comparison purposes, we restrict ourselves to the case where the capillary interface is
axisymmmetric. Governing equations for the upper and lower menisci are obtained using calculus
of variations [18, 19, 20] after minimizing the total energy functional at a constant temperature
subject to the constraint that γSL ∈ [γSLmin , γSLmax ].

Consider an axisymmetric capillary column in a tube with radius R. Let the liquid density be
ρ. The profiles of the upper and lower menisci are h1(r) and h2(r) with contact angles θ1 and
θ2, respectively. Consider the Cartesian coordinate system as depicted in Figure 3. The distance
between the origin with the minimum of the upper meniscus and maximum of the lower meniscus
are H1 and H2; p̄0 is the capillary pressure at the origin, and p̄0 ≡ p(0)− patm. Interfacial tensions
between the solid-gas, solid-liquid, and liquid-gas are γSG, γSL, and γLG.

Figure 3: Schematic drawing of a liquid column in a capillary tube with gravity acting along
the −z direction. Upper and lower contact angles satisfy θ1 < θ2. The capillary surface heights
zi = hi(r), i = 1, 2 are measured from the base of the surface as shown in figure with z direction
as positive – hence, h2 is a non-positive function whilst h1 is a non-negative function.
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Let the total surface area of the tube be At. The total energy functional, Etot, is

Etot =

(
At − 2πR

H1+h1(R)∫
H2+h2(R)

dz

)
γSG + 2πR

H1+h1(R)∫
H2+h2(R)

γSL(z) dz +

γLG

R∫
0

2πr
√

1 + h′21 (r) dr + γLG

R∫
0

2πr
√

1 + h′22 (r) dr +

R∫
0

H1+h1(r)∫
H2+h2(r)

2πr ρg z dz dr. (8)

In (8), the first two terms are the energy contribution due to the non-wetting and wetting surfaces,
on the capillary tube, respectively. These two energy terms are described by the integrals over the
wetting and non-wetting area of the capillary tube. In the second term, γSL takes values in the
interval [γSLmin , γSLmax ] and it is considered to be z-dependent. The third and the fourth terms
describe the capillary surface energy of the upper and lower meniscus profiles. This energy term
is related to the capillary-free surface area. Gravitational potential energy term is represented by
the last term and is defined over the liquid volume; liquid density is ρ, and g is the gravitational
acceleration.

Expression (8) may be simplified to

Etot = AtγSG + 2πR

H1+h1(R)∫
H2+h2(R)

(γSL(z)− γSG) dz + γLG

R∫
0

2πr
√

1 + h′21 (r) dr +

γLG

R∫
0

2πr
√

1 + h′22 (r) dr + 2πρg

R∫
0

r

2
[(h1(r) +H1)2 − (h2(r) +H2)2] dr. (9)

2.1. Derivation of the equilibrium conditions: First variation of the total energy functional
By minimizing the total energy of the system at constant volume and temperature subject to the
constraint γSL ∈ [γSLmin , γSLmax ], we find the equilibrium meniscus profiles: h1(r) and h2(r) and
the liquid column heights: H1 and H2. This approach results in the associated Euler-Lagrange
equation for h1(r), h2(r), H1, and H2 together with the boundary conditions at the three-phase
contact line [21, 18, 22]. These boundary conditions yield the corresponding Young’s equation at
the upper and lower contact lines. Furthermore, we also obtain flow rules for the change in the
contact angles when the contact lines move.

Although volume V is considered to be constant, the wetting area is allowed to vary, and
therefore, we take the first variation of (9) with respect to the variables: H1, H2, h1(r), and h2(r).
Denote the Lagrange multiplier corresponding to the constant volume constraint as p̄. Then,
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δEtot − p̄ δ V = 2πR[γSL(H1 + h1(R))− γSG](δH1 + δh1(R))−
2πR[γSL(H2 + h2(R))− γSG](δH2 + δh2(R)) +

γLG

R∫
0

2πr

[
h′1(r)√

1 + h′21 (r)
δh′1 +

h′2(r)√
1 + h′22 (r)

δh′2

]
dr +

2πρg

R∫
0

r[(h1(r) +H1)(δh1(r) + δH1)− (h2(r) +H2)(δh2(r) + δH2)] dr −

2πp̄

R∫
0

r[δh1(r) + δH1 − δh2(r)− δH2] dr

≤ 0, (10)

where the inequality is due to the fact that equality may not be attained due to the constraint
γSL ∈ [γSLmin , γSLmax ]. By using integration by parts, the first integral in (10) may be recast into

R∫
0

r
h′i(r)√

1 + h′2i (r)
δh′i dr = r

h′i(r)√
1 + h′2i (r)

δhi(r)

∣∣∣∣R
0

−
R∫

0

 rh′i(r)√
1 + h′2i (r)


′

δhi(r) dr

for i ∈ {1, 2},
(11)

and hence, (10) can be rewritten in the form:

δEtot − p̄ δ V = R[γSL(H1 + h1(R))− γSG](δH1 + δh1(R))−
R[γSL(H2 + h2(R))− γSG](δH2 + δh2(R)) +

γLG
rh′1(r)√
1 + h′21 (r)

δh1(r)

∣∣∣∣R
0

+ γLG
rh′2(r)√
1 + h′22 (r)

δh2(r)

∣∣∣∣R
0

−

γLG

R∫
0

(
rh′1(r)√
1 + h′21 (r)

)′
δh1(r) dr − γLG

R∫
0

(
rh′2(r)√
1 + h′22 (r)

)′
δh2(r) dr +

ρg

R∫
0

r[(h1(r) +H1)(δh1(r) + δH1)− (h2(r) +H2)(δh2(r) + δH2)] dr −

p̄

R∫
0

r[δh1(r) + δH1 − δh2(r)− δH2] dr.

(12)

The necessary condition for Etot to have an extremum is δEtot− p̄ δV ≤ 0. Now, δ h1(r) and δ h2(r)
have no restriction on sign and so we get:
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−γLG

(
rh′1(r)√
1 + h′21 (r)

)′
− p̄ r + ρgr(h1(r) +H1) = 0, (13)

−γLG

(
rh′2(r)√
1 + h′22 (r)

)′
+ p̄ r − ρgr(h2(r) +H2) = 0. (14)

Similarly, δ H1 and δ H2 have no restriction on sign and this leads to:

(
γSL(H1 + h1(R))− γSG

)
R− p̄ R

2

2
+ ρg

R∫
0

rh1(r) dr + ρgH1
R2

2
= 0, (15)

−
(
γSL(H2 + h2(R))− γSG

)
R+ p̄

R2

2
− ρg

R∫
0

rh2(r) dr − ρgH2
R2

2
= 0. (16)

These equations are satisfied for r ∈ [0, R]. With these deductions, the inequality δEtot − p̄ δV ≤ 0
reduces to:

δEtot − p̄ δ V = R[γSL(H1 + h1(R))− γSG] δh1(R)−R[γSL(H2 + h2(R))− γSG] δh2(R) +

γLG
rh′1(r)√
1 + h′21 (r)

δh1(r)

∣∣∣∣R
0

+ γLG
rh′2(r)√
1 + h′22 (r)

δh2(r)

∣∣∣∣R
0

≤ 0. (17)

Note that the contact line variation δh1(R) and δh2(R) are related to θ1 and θ2 respectively. For
a particular θi value, δhi(R) is determined by the inequality (17). To simplify notation, denote:

γSG − γSL(H1 + h1(R))

γLG
= cos θY1 , (18)

γSG − γSL(H2 + h2(R))

γLG
= cos θY2 , (19)

Note that for i = 1, 2, cos θYi ∈ [cos θA, cos θR]. Then, using the fact that h′1(R) = cot θ1 and
h′2(R) = − cot θ2, inequality (17) becomes:

(cos θ1 − cos θY1) δh1(R) + (cos θ2 − cos θY2) δh2(R) ≤ 0 (20)

Define: cos θA :=
γSG−γSLmax

γLG
and cos θR :=

γSG−γSLmin
γLG

. We have the following cases. For
i = 1, 2,

(i) If cos θi ∈ (cos θA, cos θR), then ∀ θYi , (cos θi − cos θYi) ≶ 0. Hence by (20) δhi(R) = 0.
(ii) If cos θi = cos θA, then ∀ θYi , (cos θi − cosθYi) ≤ 0. Thus, by (20) δhi(R) ≥ 0.

(iii) If cos θi = cos θR, then ∀ θYi , (cos θi − cos θYi) ≥ 0. Hence, by (20) δhi(R) ≤ 0.

The above inequalities yield the flow rules for the contact line motion and correspond to observed
results from experiment described in Section 1.1.
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2.2. Concept of capillary pressure and solution of the system of equations
First, we provide a physical interpretation to the Lagrange multiplier term p̄. The left hand side
of Inequality (10) may be thought of as the first variation of the augmented energy functional
Eaug = Etot − p̄ V . From Equation (8), we see that the last (gravitational energy) term of Eaug is

R∫
0

H1+h1(r)∫
H2+h2(r)

2πr (−p̄+ ρ g z) dz dr.

This expression allows us to interpret p̄ as the pressure at the origin z = 0. We term this pressure
as the Capillary pressure.

Figure 4: Schematic drawing showing the top meniscus with a liquid column underneath. Force
balance on this meniscus is given by Equation (21).

Equation (15) may be rewritten after multiplication by 2π as:

cos θY1 γLG (2π R) + (p̄− ρ g H1) (π R2) = ρg

R∫
0

2π rh1(r) dr. (21)

Equation (21) represents the balance of forces for the liquid column under the meniscus z1 = h1(r)
(see Figure 4). It is interesting to note the first term on the left hand side. As the real contact
angle is θ1, the difference (cos θY1 − cos θ1) γLG (2π R) represents the additional force due to the
adhesion between the solid wall and the liquid column – a similar or same interpretation may be
found in Joanny and de Gennes [23].

Now, to facilitate computation, we make the assumption that the height of the liquid column
under the meniscus as shown in Figure 4 is much smaller than the height of the entire liquid
in the capillary tube. This assumption is a minor one and facilitates the computation of the
quantities easily as we can re-state the assumption as θY1 = θ1. Similarly, we assume that
θY2 = θ2 by considering the bottom meniscus. Note that, with this assumption, (18) yields:
γSG − γSL(H1 + h1(R)) = γLG cos θ1 which is Young’s law applied to the contact line of the top
meniscus.

Denote by α = ρgR2. Solving (15) and (16) for H1 and H2, we get

H1 =
2γLG cos θ1R

α
+
p̄R2

α
− 2ρg

α

R∫
0

rh1(r) dr, (22)

H2 =
2γLG cos θ2R

α
+
p̄R2

α
− 2ρg

α

R∫
0

rh2(r) dr. (23)

Substituting H1 from (22) into Equation (13), we obtain a partial differential equation for h1(r)
that depends on the parameter p̄. Similarly, we may obtain a partial differential equation for h2(r).
We solve these PDEs using COMSOL R© Multiphysics software.
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2.3. Energy dissipation due to hysteresis
In [8], it is shown that the energy that must be input by an external source over the time interval
[0, T ] for the volume to change according to the profile given by V (t) (assumed to be differentiable
with respect to t), where t ∈ [0, T ] is given by:

W =

∫ tf

t0

p̄(t) V̇ (t) dt, (24)

where p̄(t) is the capillary pressure associated with the volume V (t). The above formula states
that if the capillary pressure p̄ is plotted against the volume then the area of the region under the
curve yields the energy input from the external source that is causing the volume to change. As the
relation between p̄ and V shows hysteresis (see Section 3), Equation (24) equivalently represents
the energy loss due to contact angle hysteresis when the volume of the liquid is changed in a cycle.
If the initial and final volumes are not the same, then Equation (24) also includes the internal
(potential) energy change in addition to the energy loss. Although capillary effect is a complex
phenomenon, it is interesting to note that the energetics of the system may be described by two
scalar variables - the volume of the liquid and the capillary pressure!

In the next section, we consider a specific profile for the volume change and compute the energy
that must be input by an external source to complete a cycle.

3. Numerical results and Discussion
The formation of an axisymmetric liquid column in a capillary tube is depicted in Figure 3. In the
present study, we investigate the dissipation of energy during one cycle of capillary action, when the
liquid volume inside the capillary tube first increases and subsequently decreases. Figure 5 shows a
hysteresis diagram obtained by considering the variation of wetting area with the liquid volume. Let
θ1 and θ2 be the upper and lower contact angle values and assume both angles are invariant along
the corresponding contact lines. ALow is the initial wetting area. Recall the necessary condition:
θ1 < θ2 for the static equilibrium of the liquid column. We first consider the increase in the liquid
volume at θ1 = θR and θR < θ2 < θA (refer Figure 5). During this process, assume both θ1 and θ2

increasing until θ2 reaches its advancing angle θA, and θR < θ1 < θA (segment 1–2). Once θ2 equals
θA, further continuation of liquid addition results in a downward motion of the lower contact line
with a constant contact angle θA and a decrease in the upper contact angle θ1(segment 2–3). At
point 3, let the wetting area be AHigh, and θ1 is still in the interval [θR, θA]. Paths 3–4 and 4–1 refer
to the decrease in the liquid volume. As volume is quasi-statically removed, assume both θ1 and
θ2 decrease until θ1 approaches its receding value, and let θ2 be in the interval [θR, θA] at the point
4. Hence, segment 3–4 depicts a constant wetting area. Since θ1 = θR, now the lower meniscus
begins to recede with constant contact angle θR. Liquid is removed until the column arrives at the
initial configuration: that is, wetting area ALow and liquid volume V1. This formulation assumes
that both upper and lower contact lines be pinned during the segments 1–2 and 3–4.

On vertical segments 1–2 and 3–4 the wetting area is fixed at ALow and AHigh respectively. On
segments 2–3 and 4–1, θ2 = θA and θ1 = θR, respectively. Thus, we solve the governing equations
(13) – (16), for the upper and lower menisci with appropriate boundary conditions (described
below) using the COMSOL R© Multiphysics software.

Upper and lower capillary surfaces are numerically computed by using the boundary conditions:
h′1(0) = h′2(0) = 0, h′1(R) = cot θ1, and h′2(R) = − cot θ2 with prescribed θ1 and θ2. Additional
wetting area constraint is imposed to calculate the capillary surfaces that correspond to the line
segments 1–2 and 3–4. For the numerical computations, we consider capillary tubes with a
diameter of 5mm and 1mm. All the numerical computations are made with γLG = 73 mJ/m2, ρ =
1000 kg/m3, and g = 9.82 m/s2 [3].

Wetting area, liquid volume, and area of the upper and lower interfaces are numerically computed
for each solution.
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Figure 5: A hysteresis diagram for a capillary column: the liquid volume variation with respect to
the wetting area of the liquid column.

Results of numerical computations of upper and lower menisci in a capillary tube of diameter
2R = 5 mm are displayed in Figure 6. Upper and lower contact angles are at 35◦ and 65◦,
respectively. The liquid column volume is 4.63 × 10−8 m3. For any pair of {θ1, θ2}, the volume
V of the liquid may be calculated using the static equilibrium condition:

2πγLGR(cos θ1 − cos θ2) = ρgV, (25)

hence, we use the criterion (25) to validate our meniscus profiles.
We calculate the energy losses when the liquid volume inside the capillary tube first increases and

subsequently decreases. The corresponding energy diagram is in Figures 7. Area under each closed
loop denotes the energy dissipation due to the capillary pressure. Table 1 presents the variations
of the energy terms for different upper and lower contact angle (θ1 and θ2) values.
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Figure 6: Upper and lower menisci profiles. The capillary tube diameter is 5mm, and the capillary
pressure at the origin p̄(0) = −10 N/m2. In this numerical simulation, the upper and lower contact
angles are θ1 = 35◦ and θ2 = 65◦, respectively. The liquid bridge has the wetting area 5.76×10−5 m2

with volume 4.63× 10−8 m3.
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Table 1: Energy variations with capillary tube with diameter of 1 mm. Initial and final wetting
areas are 4.00× 10−5 m2 and 4.18× 10−5 m2. All the numerical computations are performed under
the assumptions of advancing angle θA = 66◦ and receding angle θR = 30◦.

θ1 θ2 Wetting
area

×10−5(m2)

Volume
×10−8(m3)

Capillary
Pressure
(N/m2)

30.0 62.0 3.99 1.85 -7.05
30.8 62.6 4.00 1.86 -11.32
33.6 64.4 4.00 1.87 -15.28
36.0 66.0 4.00 1.88 -18.94
35.8 66.0 4.02 1.89 -18.51
35.6 66.0 4.04 1.90 -18.20
35.4 66.0 4.06 1.91 -17.88
35.2 66.0 4.08 1.92 -17.57
35.0 66.0 4.10 1.93 -17.25
34.8 66.0 4.12 1.94 -16.93
34.6 66.0 4.14 1.95 -16.62
34.2 66.0 4.18 1.97 -16.07
33.0 65.2 4.18 1.96 -14.22
31.2 64.0 4.18 1.95 -11.52
30.0 63.2 4.18 1.94 -9.6
30.0 63.0 4.13 1.93 -9.23
30.0 62.6 4.07 1.90 -8.37
30.0 62.4 4.04 1.88 -7.90
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Figure 7: Energy diagram for capillary pressure versus liquid volume. Capillary tube diameter is
1 mm, and in this numerical simulation θR = 30◦ and θA = 66◦. The low and high wetting areas are
4.00× 10−5 m2 and 4.18× 10−5 m2, respectively. Energy required to complete the cycle 1–2–3–4–1
is approximately 8.21 nJ.

Table 1 shows the capillary energy variations with volume of the liquid column. Rows 1–4,
5–11, 12–15, and 16–18 of the table correspond to the volume variations that also correspond to
line segments 1–2, 2–3, 3–4, and 4–1, respectively (see the hysteresis diagram: Figure 5). Figure 7
depicts the capillary pressure variation with volume of the liquid column with diameter of 1 mm.
Energy required to complete the cycle 1–2–3–4–1 is approximately 8.21 nJ.

3.1. Energy losses due to viscosity of the liquid
A study of the energy mechanisms involved in wetting and drying of water in soil is very important
in the field of climate change, and also for determining optimal irrigation procedures for agriculture
[24]. Soil pore spaces are micro capillary tubes which fill-up and dry-out due to rainfall and/or
irrigation. Completion of one cycle of wetting and drying involves motion of the contact line. There
are two different mechanisms for energy lost in this process – (1) hysteresis that originates due to
contact angle hysteresis, which is rate-independent; (2) viscous friction opposing fluid motion.

Numerical computation presented in Section 3 shows that the energy demand due to rate-
independent hysteresis for a capillary tube with diameter of 0.1 cm, approximate wetting area of
0.4 cm2, and capillary surface motion of 0.006 cm (corresponding to wetting area change of 0.018
cm2) is 0.0821 ergs. Next, we consider viscous friction during contact line motion so that one may
compare numbers and get an idea of the more dominant mechanism of entropy increase (or increase
in internal energy of the liquid and surroundings) in capillary effect. To enable analysis, and for
clarity, a simpler configuration of a liquid bridge is chosen as shown in Figure 8 for analysis [25, 26].

In the previous research work [25, 26], we investigated the viscous energy dissipation of a fluid
flow that results as a consequence of the deformation of a capillary interface. In particular, we
considered a capillary surface between two parallel, non-ideal solid surfaces and assumed the
invariance of the interface in z−direction (see Figure 8). The fluid flow was analyzed using
the Navier-Stokes and Continuity equations, and the viscous energy dissipation was numerically
computed during the deformation of the interface. The distance between two plates is 0.1 cm and
the wetting area change is approximately 0.01 cm2. During the motion of the capillary interface,
we found the energy dissipation due to viscosity to be 3.64× 10−4 ergs. For this reason, hysteresis
energy loss seems to be significantly greater (by a factor of more than 200) than energy loss due to
viscosity for comparable dimensions.
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Figure 8: Two vertical plates, which are immersed in a liquid. Capillary interface is invariant in
the z−direction.

4. Conclusions
In this study, we investigated the energy dissipation due to the effect of contact angle hysteresis
using a liquid column formed in a capillary tube in which volume of the column first increases and
subsequently decreases. Equations for the upper and lower menisci were obtained by minimizing
the Helmholtz energy at a constant volume and temperature subject to the constraint that the
energy of the interface between the solid and the liquid takes values in an interval. We present
numerical solutions of the derived equations for the case of a capillary tube with 1 mm diameter.
The energy required to overcome contact angle hysteresis seems to be 2 orders of magnitude greater
than that required to overcome fluid viscosity for a comparable liquid bridge. This suggests that
contact angle hysteresis is the dominant mechanism of energy loss in nano-fluidics.
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