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Abstract. A model of effective Hamiltonian is proposed in second quantization representation
for system of surface plasmons and photon (polariton) in metallic nano wires. The dispersion
relation curves of surface plasmon polariton was calculated by mean of the Bogoliubov
diagonalization method. The surface plasmon photon vertexes are considered. The conditions
for excitation surface plasmon, existence plasmon radiate modes, and a possible application of
metallic nano wires were also discussed.

1. Introduction
In the last tens years, the new field of plasmon has been developed, which discussed the
interesting features of metals with nano structure, exciting with an electromagnetic radiation:
the plasmon resonance.

The plasmon is a quasiparticle resulting from the quantization of plasma oscillations.
Plasmons are collective oscillations of the free electron gas density. A Plasmon can couple
with a photon to create another quasiparticle called a plasmon polariton. Surface plasmons are
plasmons which are restricted in surfaces and interact strongly with light resulting in a polariton.
They occur in the interface of a vacuum and material with a small positive imaginary and large
negative real dielectric constant. It is usually a metal or doped dielectric.

The result of this combination is the interesting optical properties of absorption and scatter in
the Vis - IR region and can be exploited for many applications in modern technology. They also
play an important role in new interesting physics phenomena such as Surface Enhanced Raman
Spectroscopy (SERS), Surface Plasmon Energy Transfer (SET), and Forster Resonance Energy
Transfer (FRET) and have numerous other applications in plasmonics and nanotechnology and
medical treatments [1-16].

Since for all these surface plasmon polariton (SPP) systems the downscaling of the cross
section is not limited by the light wavelength, they represent a promising alternative to dielectric
optical waveguides. Thus, there is a substantial interest in the fundamental properties of SPP
propagation in nanoscale structured matter, which is determined by the respective dispersion
relations.

Nowadays, the experimental determination of the dispersion relation in the confined metallic
films with nanoscopic cross sections nanowires is a challenging task, as the methods such as total
internal reflective attentuated spectroscopy cannot be applied easily because of the small size
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of the nanowires. An alternate experimental technique, conventional spectroscopic extinction,
was proposed in [5], allowing the measurement of plasmon resonances in metallic nanowires
with finite length. Absorption and scattering in a nanowire give rise to an extinction band, the
maximum of which is used to define the frequency of the resonance of the SPP mode.

In the article [17], the experimental determination of the dispersion relation for Ag and Au
nanowires was reported. Interestingly, it was shown at the multipolar plasmon resonances of
metal nanowires can be described in terms of standing plasmon waves, allowing one to deduce
the dispersion relation from optical extinction measurements. The proposed model is supported
by additional investigations with a modified experimental setup.

The focus was taken into the metallic nanowire systems which have already great interests
in the SPP waveguides, and could produce a strong evanescence field near their surface. It is
also known as an intrinsic problem restricting the applications of surface plasmons, which is the
energy loss. To overcome this obstacle, hybrid surface plasmon modes supported by a composite
waveguide of metal, spacer and dielectric, have been introduced.

In the previous work [19 ], a simple second quantization Hamiltonian for SPP with planar
geometry was proposed.

In this research, we studied the quantum theory of surface plasmons, and plasmon polaritons
with metallic nanowires. The Drude model was reviewed first and then applied for the metallic
nanowires with cylindrical symmetry. Using the Mie theory for small radius metallic nanowires,
the dispersion relation of surface plasmon polaritons was found. Based on that results, a simple
two branch surface plasmon polariton model was considered for metallic nanowires with a
definition of plasmon-photon effectiveness correlation constant. The dispersion relation SPP
was found by applying the Bogoliubov diagonalization technique to the the second quantization
model Hamiltonian for system of surface plasmon and photon in metallic nano wires. The
comparison of the theoretical results obtained from our model and experimental data give good
agreement.

2. Drude model for single mode surface plasmon polaritons
In this part we presented a simple semi-classical model, like Dude model for single mode surface
plasmon polariton in metallic nano particle.

In the semi-classical theory, the dielectric response of surface palsmon is characterized by the
Drude formula, which is the generalized Lorentz model for metals

εm (ω) = ε∞ −
ω2
SP

[ω (ω + iγP )]
, (1)

where γP is the damping constant, ωP = ηωSP is the surface plasmon frequency with the
parameter η defined by the dimension and geometry properties of metallic nano particles,
ωP =

√
ne2/ε0m∗ is the bulk plasmon frequency, ε∞ and ε0 are the high frequency and static

dielectric constants, n is the density and m∗ is the effective mass of electrons in the metal.
Considering γP << ωSP - the damping constant is much smaller than surface plamon

frequency, the standard Drude model is

εm = ε∞ −
ω2
P

ω2
. (2)

Like in the case of Lorentz model, we can separate the real and imaginary parts of the
dielectric constant by analyzing the function around the value of ω ' ωP

εm (ω) ' ε∞ −
ω2
SP

(ω − ωSP )2 + γ2P
+ i

ω2
SPγP

ω
[
(ω − ωSP )2 + γ2P

] . (3)
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Figure 1. Model metallic nano wire

The real part Re and imaginary part Im of plasmon dielectric constant εm (ω) now have the
Lorentz-like forms, i.e. have a dispersive

ε1m (ω) = Re εm (ω) = ε∞ −
ω2
SP

(ω − ωSP )2 + γ2P
= Adis, (4)

and for absorption part

ε2m (ω) = Im εm (ω) =
ω2
SPγP

ω
[
(ω − ωSP )2 + γ2P

] = Aabs. (5)

It is noted here that the asymmetric absorption peak around ωSP is the common behavior
of plasmon absorption. For the case of metallic half space with planar geometry, we have
ηplanar = 1/

√
1 + εd or ηplanar = 1/

√
2 in the vacuum εd = ε0 = 1.

The dispersion laws of surface plasmon polariton Ω (k) are defined from the boundary
conditions.

3. Drude like model for surface plasmon polariton in nano wires
To calculate the group velocity dω = dk as a function of a metallic nano wire radius R, a model
consisting of a metallic cylinder with a dielectric constant εm surrounded by a dielectric medium
of dielectric constant εd was used (see the figure 1).

For the special case with TM mode (Hz = 0) and fundamental mode with no winding m = 0,
continuity of the remaining tangential components Ez and Hφ at the boundary lead to the
equation for SPP dispersion relations. In this case the surface plasmon propagation is governed
by the dispersion relation for the fundamental transverse magnetic modes, which is given by [16]

k22
k2⊥

J ′0 (k2⊥R)

J0 (k2⊥R)
− k21
k1⊥

H ′0 (k1⊥R)

H0 (k1⊥R)
= 0, (6)

where ki =
√
εiω/c =

√
k2i⊥ + k2i‖ and Jm, Hm are Bessel and Hankel functions of the first kind,

respectively. By numerically solving the above equation (6), we can calculte the group velocity

as a function of R with frequency ω and given εd and εm. In the limit of ki⊥ =
√
k2i − k2i‖ ' ik‖

we have
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Figure 2. SPP dispersion relation for metallic nano wire in the Drude like model

εm
εd

=
K ′0

(
k‖R

)
I0
(
k‖R

)
K0

(
k‖R

)
I ′0

(
k‖R

) , (7)

where Km, Im are modified Bessel and Hankel functions, respectively.
Taking the case of metal/vacuum interface εd = 1, from the Drude model the frequency ωk

equals

ω2 = ω2
P (ε∞ − εm) (8)

In the Drude like model, the SPP dispersion relation for metallic nano wires is

ωDW
(
k‖, R

)
= ωP

ε∞ − K ′0

(
k‖R

)
I0
(
k‖R

)
K0

(
k‖R

)
I ′0

(
k‖R

)

−1/2

, (9)

or using the properties of modified Bessel and Hankel functions, it can be rewritten as follow

ωDW
(
k‖, R

)
= ωP

ε∞ − K1

(
k‖R

)
I0
(
k‖R

)
K0

(
k‖R

)
I1
(
k‖R

)

−1/2

, (10)

and is plotted in the figure for the cases ε∞ = 1, and ε∞ = 3.7 (Ag).

For almost metals bεm/εdc � 1 that
⌊
k‖R

⌋
� 1

εm
εd
' 2[

a+ ln
(
k‖R

)] (
k‖R

)2 , (11)

where a = γE − ln2 , γE = 0.577 is the Euler’s constant. Denote k‖ = nk0 we got

n (R) ' C (εd, εm)

k0R
, (12)

where the function C is

C (εd, εm) =

√
−2εd/εm

ln
√
−4εm/εd − γE

. (13)

For k0R → 0, the phase velocity vph = c/n → 0, and the group velocity vgr =
c/ [d (nω) /dω]→ 0.

In the case of small radius nanowires k‖R ≤ 1, we obtain the dispersion relation for SPP
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Figure 3. The dispersion relations for SPP obtained by equation (10) curve, and (14) dashed
line

ωDW
(
k‖, R

)
' ωP

ε∞ − 2εd[
a+ ln

(
k‖R

)] (
k‖R

)2

−1/2

. (14)

In the figure 3, we plot the dispersion relations for SPP obtained by equation (10) curve, and
(14) dashed line. For guiding, the photon line (thick) also is plotted. The dispersion relation
from (14) valid only for small nanowires.

4. Second quantization quantum Hamiltonian model for surface plasmon
polaritons in metallic nano wires
In the similar cases of exciton plariton and phonon polariton, we consider a model Hamiltonian
in 2nd quantization form for surface plasmon polariton in metallic nano wires with single mode

H =
∑
k

Hk =
∑
k

{
ωγka

+
k ak + ωP1b

+
k bk + gk

(
a+k bk + b+k ak

)}
, (15)

where ak(a
+
k ) and bk(b

+
k ) are the annihilation (and creation) photon and plasmon operators

correspondingly with momentum k, ωP1 is the surface surface plasmon energy with m = 1, and
ωγk = ck/

√
εd is the photon dispersion law. We denote gk the plasmon-photon transition vertex

(or coupling constant), this vertex is absence in traditional plasmon theory gBk = 0 because the
bulk plasmon is longitudinal excitation, while photon is transverse excitation. For the case of
surface plasmons due to the existence of the boundary conditions that electromagnetic waves
must be satisfied at the interface, the plasmon-photon transition vertex might not be zero, and
being the main parameter of our theory.

5. Bogoliubov transformation and dispersion relation
We use the Bogoliubov transformation technique taken from the theory of superconductivity for
the plasmon polariton diagonalized Hamiltonian

Hk =
∑
k

{
ΩUkγ

+
UkγUk + ΩLkγ

+
LkγLk

}
, (16)

where γik (andγ+ik ) are the annihilation (and creation) operators of the surface plasmon
polarition SPP with momentum k, and i is the branch number i = L = 1 for lower and
i = U = 2 for upper branch.
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Figure 4. Simple two bands SPP model with the effctive gk = const

The transformations with unity condition u2k + v2k = 1 are

γ1k = ukak + vkbk, γ2k = −vkak + ukbk. (17)

Using the commutative relations for annihilation and creation operators
[
ak, a

+
k

]
= 1,

[bk, b+] = 1,
[
γik, γ

+
ik

]
= 1, and equalling to zero in other cases, by standard calculation as

in [4] we obtain the surface plasmon polariton SPP dispersion relations for lower branch

ΩLk (R) =
1

2

{
[ωγk + ωP1 (R)]−

√
[ωγk − ωP1 (R)]2 + 4g2k

}
, (18)

and for upper branch

ΩUk (R) =
1

2

{
[ωγk + ωP1 (R)] +

√
[ωγk − ωP1 (R)]2 + 4g2k

}
. (19)

Note that in the case of planar boundary geometry, the upper branch is lying in the energy
gap where damping is too high so only the lower branch exist, while in the case of metallic nano
spherical geometry, both branches could be exist. The surface plasmon polariton dispersion
relation Ωk depends on wave vector k and coupling constant gk = 0.3ω∗P is presented in the
figure 4.

Note that the simple two bands model with the effective gk = const of surface plasmon
polariton might be best in the most important bottom region but may be fare in the long wave
limit k = 0.

6. Coupling constant gk with k-dependence
As mentioned above, the simple two bands model of surface plasmon polariton might be best
in the most important neck region but may be failed in the long wave limit k = 0. In this part,
we propose to overcome this problem by investigation the k-dependence of the plasmon-photon
coupling constant.

Assuming the two dispersion relations of Drude and lower SPP branch with ωγk ≤ ωP1 of
our quantum model are equal ωDW = ΩLk, and putting k = k‖ we got the equation for finding
the plasmon-photon coupling constant gWk

ωDW (k,R) =
1

2

{
(ωγk + ωP1)−

√
(ωγk − ωP1)

2 + 4g2Wk

}
. (20)

The solution of this equation is
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Figure 5. The value of the plasmon-photon coupling constant gk depends on wave vector k
, a) calculated from equation (10) (curve), and from optical model [15] (dashed line), b) from
comparison with Drude mode
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Figure 6. The dispersion relation obtained by our model

g2Wk (R) = [ωk+ − ωDW (k,R)]2 − ω2
k−, (21)

where

ωk± =
1

2
(ωP1 ± ωγk) , (22)

for the SPP lower branch k = k if k < kp1, and k = kP1 if k ≥ kp1.
The value of the plasmon-photon coupling constant gk depends on wave vector k at the

metal/vacuum interface (εd = 1) is plotted in the figure 5, here , and will be taken as parameter
of our model.

With this plasmon-photon coupling constant, the dispersion relation obtained by our model
is presented in the figure 6.

Two branches of surface plasmon polariton of metallic nano wires (curve and Dashing [Large])
is plotted in the figure 7 with the proposed coupling constant gk (DotDashed).

Note that the existence of upper branch. This branch might play an important role in some
physics phenomena.

Discussion
In this work, we reviewed and studied several semiclassical and quantum models of surface
plasmons and surface plasmon polariton in the cylindrical symmetry. We proposed a simple
two branch model Hamiltonian for surface plasmon polarization in second quantification
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Figure 7. Two branch model for surface plasmon polariton of metallic nano wires (Up-curve
and Low-Dashing [Large]) with the proposed coupling constant gk (DotDashed)

representation for metallic nanowires. The main parameter of the model is surface plasmon
photon transition vertex (surface plasmon photon effective coupling constant) was obtained. We
compared the two cases planar and cylindrical geometries. For the case of planar geometry, the
conditions for excitation are needed, while that do not need for the case of cylindrical geometry.
The existence of upper surface plasmon polariton branch with the photon-like behavior at high
frequency will play an important role in explanation the some experimental results.
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