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Abstract. Using the connection between q-deformed harmonic oscillator and Morse–like
anharmonic potential we investigate the energy spectrum inverse problem. Consider some
energy levels of energy spectrum of q–deformed harmonic oscillator are known, we construct
the corresponding Morse-like potential then find out the deform parameter q. The application
possibility of using the WKB approximation in the energy spectrum inverse problem was
discussed for the cases of parabolic potential (harmonic oscillator), Morse–like potential
(q–deformed harmonic oscillator). so we consider our deformed–three–levels simple model,
where the set–parameters of Morse potential and the corresponding set–parameters of level
deformations are easily and explicitly defined. For practical problems, we propose the deformed-
three-levels simple model, where the set–parameters of Morse potential and the corresponding
set-parameters of level deformations are easily and explicitly defined.

1. Introduction
Recently, quantum group and deformed Heisenberg algebras with q–deformed harmonic oscillator
have been a subject of intensive investigation. This approach is found some applications in various
branches of physics and chemistry [1–6]. The method of q–deformed quantum mechanics was
developed on the base of Heisenberg commutation relation (the Heisenberg algebra). The main
parameter of this method is the deformation parameter q ∈ [0, 1].
The Morse potential has an important role in describing the interaction of atoms in diatomic and
even polyatomic molecules [7–10] in atomic and molecular physics. Despite its quite simple form,
the Morse potential describes very well the vibrations of diatomic molecules. This is because
that four–particle complex system (two heavy atomic nuclei with positive charge and two light
electrons with negative charge) can be reduced to relative motion between two atomic nuclei
in an effective potential which is average Coulomb interaction of nuclei and electron clouds.
Morse–like potential models just work with a simple one–dimensional three–parameter effective
potential, found many applications in condensed matter, biophysics, nano–science and quantum
optics.
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The Morse potential in algebraic approach can be written in terms of the generators of SU(2). The
quantum relation between q–deformed harmonic oscillator and Morse potential was considered
in [8], where then the anharmonic vibrations in Morse potential have been described as the levels
of q–deformed harmonic oscillator. The extended SU(2) model (q-Morse potential) also develop
to compare with phenomenological Dunham’s expansion and experimental data for numbers of
diatomic molecules [8, 9]. In this work, considering deformed algebra is mathematical object and
atomic effective potential is physical model, we use this relation in inverse way to investigate
properties of q–deformed harmonic oscillator on the base of the Morse potential.
In the our previous works [11, 12] we have shown that the potential of harmonic oscillator is
parabolic with infinity equal–step levels, and the potential of q-deformed harmonic oscillator
might be described as Morse–like anharmonic potential with finite unequal–step levels. The
relation between the deformation parameter q and the set of parameters of Morse–like anharmonic
potential was found.
In this work, using the connection between q–deformed harmonic oscillator and Morse–like
anharmonic potential we investigate the inverse problem of the energy spectrum. Consider some
energy levels of energy spectrum of q–deformed harmonic oscillator are known, we construct the
corresponding Morse–like potential then find out the deform parameter q and associate with it
the new parameter δ characterized the level deformation. The possibility of using the WKB
approximation in the energy spectrum inverse problem was discussed for the cases of parabolic
potential (harmonic oscillator) and Morse–like potential (q–deformed harmonic oscillator).

2. Semiclassical Wentzel–Kramers–Brillouin WKB method
2.1. Bohr–Sommerfeld quantization conditions
It is well–known that the Bohr–Sommerfeld quantization conditions are a procedure for selecting
out certain discrete set of states of a classical integrable motion as allowed states. These are like
the allowed orbits of the Bohr model or standing waves of de Broglie of the atom; the system
can only be in one of these states, but not in any states in between.
A particle in a one–dimensional potential can be described by the Schrödinger equation:[

− ~2

2µ

∂2

∂2
x

+ V (x)

]
ψ (x) = Eψ (x) , (1)

where µ is the particle mass, ~ is the Planck constant.
The semiclassical Wentzel–Kramers–Brillouin WKB method is based on the ansatz

ψ (x) = A (x) exp [iS (x) /~] . (2)

In the limit as ~→ 0, the action S(x) in the exponential satisfies the Hamilton–Jacobi equation
for the action function

E =
1

2µ

(
dS

dx

)2

+ V (x) , (3)

we have

S
′
(x) = dS

dx

=
√

2µ [E − V (x)].
(4)
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It is then shown that this usually leads to the Bohr–Sommerfeld quantum conditions on periodic
orbits

˛
dx
√

2µ [E − V (x)] = 2π~
(
n+

1

2

)
, (5)

with n = 0, 1, 2 , 3 , . . .

For one–dimensional problems, the cyclic integral can be replaced by 2
´ x2
x1

, where x1 and x2 are
the classical turning points of the motion and E = V (x).

2.2. Application of WKB method to the case of harmonic potential
As an example consider the linear harmonic oscillator with

V0 (x) =
1

2
Kx2, (6)

where K is the spring constant, and

x1,2 = ±
√

2E/K. (7)

The quantum condition reads

ˆ +
√

2E/k

−
√

2E/k
dx
√

2µ (E −Kx2/2) = 2π~
(
n+

1

2

)
, (8)

which can be solved to give

E0n = ~
(
n+ 1

2

)√
K
µ

= ~ω0

(
n+ 1

2

)
,

(9)

where ω0 =
√
K/µ. This is one of a small number of cases in which the WKB method gives the

exact quantum–mechanical energies.

2.3. Application WKB method to the case of Morse potential
The semiclassical (WKB) method applied to one–dimensional problems with bound states often
reduces to the Sommerfeld–Wilson quantization conditions, the cyclic phase–space integrals

˛
dx
√

2µ [E − VM (x)] = 2π~
(
n+

1

2

)
. (10)

It turns out that this formula gives the exact bound–state energies for the Morse oscillator with

VM (x) = D
[
e−2k(x−x0) − 2e−k(x−x0)

]
, (11)

where x0 is the minimum position, D is the depth and k is the width of potential.
The requisite integral can be reduced to

2

ˆ x2

x1

dx
√
E − VM (x), (12)
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in which x1 and x2 are the classical turning points

x1,2 = x0 +
1

k
ln

[
D

E

(
−1±

√
1 +

E

D

)]
. (13)

The integral can be done "by hand", using the transformation, using the transformation
r = exp [k (x− x0)] followed by a contour integration in the complex plane, but can evaluate the
integral explicitly, needing only the additional fact that ln (−1) = iπ. The result reads

2π
√

2µ

k

(√
D +

√
−E
)

= 2π~
(
n+

1

2

)
, (14)

which can be rewritten (√
D +

√
−E
)

=
~k√
2µ

(
n+

1

2

)
. (15)

The above equation can be solved for E to give

−E =

[
−
√
D +

(
n+

1

2

)
k√
2µ

~
]2

. (16)

This result is coincided with exact solution (see text book of Landau–Liftshitz: QM).
Denote the highest bound state is nmax =

[√
2µD/ (~k)

]
where [...] represents the floor, which

for positive numbers is simply the integer part.
We have energy spectrum

En = D

[
2

nmax

(
n+

1

2

)
− 1

n2
max

(
n+

1

2

)2

− 1

]
, (17)

with n = 0, 1, 2 , 3 , ..., nmax, or

EMn = En −D
= ~ωM

[(
n+ 1

2

)
− 1

2nmax

(
n+ 1

2

)2]
,

(18)

where ωM is the Morse frequency, which equals

ωM = 2D
~nmax

= k
√

2D
µ ,

(19)

The values of D, k, and x0 of diatomic molecules are taken from experiments.
Actually, the Morse experimental parameters are the dissociation parameter D, the fundamental
vibrational frequency ωM , the equilibrium internuclear distance x0. and the reduced mass
µ = m1m2/ (m1 +m2). The exponential parameter is given by k = ωM

√
µ/2D in appropriate

units k ' 1. The Schrödinger equation for the Morse oscillator is exactly solvable, giving the
vibrational eigenvalues

εM = ωM

(
n+

1

2

)
−
ω2
M

4D

(
n+

1

2

)2

, (20)
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Unlike the harmonic oscillator, the Morse potential has a finite number of bound vibrational
levels with nmax ' 2D/ωM .
Compare with the Dunham anharmonic parameter relations in the spectroscopy χeωM = A =
k2/ (2D)and ωM = 2nmaxA = k

√
2D/µ we have

χe =
k2

2DωM
=

k2

4D2
~nmax = k

√
µ

2D
(21)

Introduce the energy differences as

∆EMn = ~ωM
(
EMn − EM(n−1)

)
, (22)

and for lowest energy levels

∆EM1 = ~ωM
(

1− 1

nmax

)
∆EM2 = ~ωM

(
1− 2

nmax

)
∆EM3 = ~ωM

(
1− 3

nmax

)
... (23)

According to our Morse Potential for Deformation model (MPD model) [12], we can define a new
deformation parameter qM , which is satisfied the equation

1

2nmax
= 1− qM , (24)

we have

∆EM1 = ~ωMqM , ∆EM2 = ~ωM (2qM − 1) , ∆EM3 = ~ωM (3qM − 2) ... (25)

From the two first equations we obtain the deformation parameter qM

qM =
1

2− ∆EM2
∆EM1

, (26)

and the Morse frequency

ωM =
1

~
(2∆EM1 −∆EM2) . (27)

3. Harmonic approximation for Morse oscillator
In this part we find the harmonic approximation for Morse oscillator.
From definition of Morse potential easy to see that

dVM (x)

dx
= V

(1)
M (x) = D

[
−2ke−2k(x−x0) − 2ke−k(x−x0)

]
, (28)

and
d2VM (x)

dx2
= V

(2)
M (x) = D

[
4k2e−2k(x−x0) − 2k2e−k(x−x0)

]
, (29)

so
VM (x0) = −D, V (1)

M (x0) = 0, V 2
M (x0) = 2Dk2. (30)
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Using the Taylor series expansion around x = x0, we found harmonic approximation potential
for Morse oscillator

VH (x) ' VM (x0) + V
(1)
M (x0) (x− x0) +

1

2
V

(2)
M (x0) (x− x0)2 = −D +Dk2 (x− x0)2 , (31)

with the spring constant K ′/2 = Dk2and corresponding harmonic frequency ωH =
√
K ′/µ =

k
√

2D/µ. We have the relation
ωi = ki

√
2Di/µ, (32)

where i = M,H, 0.

4. Inverse problem of deformed harmonic oscillator
Suppose that the 3 first energy levels E0, E1, E2 are known, so we have two energy separations
∆2 and ∆2

∆1 = E1 − E0, ∆2 = E2 − E1. (33)

Define the deformation parameter q

q =
1

2− ∆2
∆1

, (34)

the oscillation frequency ωq
ωq =

1

~
(2∆1 −∆2) , (35)

The highest bound state Nq is

Nq = [1/2 (1− q)] =

[
(2−∆2/∆1)

2 (1−∆2/∆1)

]
, (36)

where [...] represents the integer part.
If ∆2 < ∆1, then 0 < q < 1, Nq = /2 (1− q), we have the case of deformed harmonic oscillator
with finite unequal-step levels, which can be characterized by a Morse-like potential

VMq(x) = Dq

[
e−2kq(x−x0) − 2e−kq(x−x0)

]
. (37)

with the energy deep Dq

Dq =
~ωq

(1− q)
=

(2∆1 −∆2)2

(∆1 −∆2)
, (38)

The exponential parameter kq

kq = ωq

√
µ

2Dq
=
√

1− q
√
ωqµ

2~
=

1

~

√
µ

2
(∆1 −∆2). (39)

The corresponding parabolic potential VHq (x) with the oscillation frequency ωq =
1
~ (2∆1 −∆2) = kq

√
2Dq/µ is

VHq (x) = −Dq +
Kq

2
(x− x0)2 = −Dq +

1

2
µω2

q (x− x0)2 . (40)

If the separations are equal ∆2 = ∆1, then q = 1, N =∞, we have the case of harmonic oscillator
with infinite equal-step levels, which can be characterized by a parabolic potential VH1 (x) with
the oscillation frequency ω1 = k1

√
2D1/µ

VH1 (x) = −D +
1

2
µω2

1 (x− x0)2 . (41)
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Figure 1. Morse potential
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Figure 2. The relation between q and δ: a) q on δ, and b) δ on q.

5. Model example
Consider the first three energy levels E0, E1, E2are known, we define two parameters ∆1 =
E1 − E0, and ∆2 = E2 − E1. Introduce the ratio parameter δ as the main parameter of our
model

δ = ∆E2/∆E1 = ∆ε2/∆ε1. (42)

For the case of Morse oscillator 0 < δ < 1 , example three levels Morse oscillator is presented in
the figure 1. For the case of harmonic potential δ = 1.
Taking also two values r0 and k0 = (1/~)

√
∆1µ/2 are the equilibrium distance and imaginary

impulse of anharmonic Morse oscillator (with q=1 is harmonic case), we will express all physical
values via the energy difference {∆1, δ}or deformation{∆1, q}set parameters.
We have the deformation parameter q

q =
1

2− δ
←→ δ = 2− 1

q
, (43)

the relation between q and δ are presented in the Fig. 2a and 2b
The value nmax is

N = nmax =

[
(2− δ)

2 (1− δ)

]
=

[
1

2 (1− q)

]
, (44)

where [...]is the integer part, and are presented in the figure 3 as a functions on δ (upper steps),
and on q (lower steps).
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Figure 3. The relation value nmax on δ (upper steps), and on q (lower steps).
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Figure 4. The frequency ω/∆1 : a) on δ, and b) on q.

The frequency
ω

∆1
= 2− δ =

1

q
, (45)

and its values are presented in the figure 4 as a functions of (blue), and on q (yellow).
The energy deep Dq

Dq

∆1
=

(2− δ)2

(1− δ)
=

1

q

[
1

(1− q)

]
, (46)

are ploted in the figure 5.
The imaginary momentum-like width (effective mass) kq

kq
k0

=
√

1− δ =

√
1

q
− 1, (47)

are presented in the figure 6.
We found the Morse-like potential

UM (χ) =
VM
~ω0

=
(2− δ)2

(1− δ)

[
e−2a(χ−1)

√
1−δ. − 2e−a(χ−1)

√
1−δ
]
, (48)

IWTCP-3 & NCTP-40 IOP Publishing
Journal of Physics: Conference Series 726 (2016) 012019 doi:10.1088/1742-6596/726/1/012019

8



a 0.0 0.2 0.4 0.6 0.8 1.0
δ

2

4

6

8

10
Dq/Δ1

b 0.0 0.2 0.4 0.6 0.8 1.0
q

2

4

6

8

10
Dq/Δ1

Figure 5. The energy deep of Morse potential Dq/∆1: a) on δ, and b) on q.
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Figure 6. The parameter kq of Morse potential on δ (upper curve), and on q (lower curve).

where χ = x/x0, a = k0x0, and the corresponding harmonic potential

UH (χ) =
VH
~ω0

= −(2− δ)2

(1− δ)
+

1

2
(2− δ)2 µx2

0 (χ− 1)2 . (49)

The Morse potential UM and the corresponding harmonic potential UH are presented in the
figure 7.
The energy spectrum of Morse potential is

εn =
En
41

= (2− δ)

[(
n+

1

2

)
− 1

2nmax

(
n+

1

2

)2
]
, n = 0, 1, 2 , 3 , ..., nmax, (50)

with first four levels

ε0 = (2− δ)
(

1

2
− 1

8nmax

)
,

ε1 = (2− δ)
(

3

2
− 9

8nmax

)
, (51)

ε2 = (2− δ)
(

5

2
− 25

8nmax

)
,

ε3 = (2− δ)
(

7

2
− 49

8nmax

)
,
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a b

Figure 7. a) The Morse potential UM and b) with the corresponding harmonic potential UH

The level difference ∆εn are
∆εn = εn+1 − εn, (52)

and for some lowest levels

∆ε1 = (2− δ)
(

1− 1

nmax

)
, ∆ε2 = (2− δ)

(
1− 2

nmax

)
, ∆ε3 = (2− δ)

(
1− 3

nmax

)
... (53)

In the harmonic limit δ → 1,q → 1, nmax →∞, we have ε0 → 1/2,ε1 → 3/2 ,ε2 → 5/2 , ... and
∆ε1 → 1,∆ε2 → 1,∆ε3 → 1 , ...
In the strong deformation limit δ → 0, q → 1/2, nmax → 1 (see the figure 3), we remain only
two levels ε0 → 2 (1/2− 1/16) = 0.875, ε1 → 2 (3/2− 9/16) = 1.875, and ∆ε1 → 1, ∆ε2 → 0.
In general, for Morse like potential in WKB approximation the classical turning points are defined
by the expression

χ1,2 (n) = 1 +
1

k0x0
Ln

[
D

E (n)

(
−1±

√
1 +

E (n)

D

)]
. (54)

Given energy spectra E (n), we define χ1,2 (n), so and Morse–like potential.

6. Discussion
In this work using the model proposed in [12] with the defined connection between q-deformed
harmonic oscillator and Morse–like anharmonic potential, we investigate the energy spectrum
inverse problem. Consider some lowest levels of energy spectrum of q-deformed harmonic
oscillator are known, we construct the corresponding Morse-like potential with well defined
deform parameter q and also new level deformation parameter δ. The possibility of using
the WKB approximation in the energy spectrum inverse problem was discussed for both cases
of parabolic potential (harmonic oscillator) and Morse-like potential (q-deformed harmonic
oscillator).
Some most important relations between the set-parameters {∆1, δ, q} of level deformations and
set-parameters {D, k, x0} of Morse potential are derived explicitly. In the week-deform limit
δ → 1,q → 1; nmax → ∞, we back to the harmonic case with many unique step levels. In the
strong-deform limit δ → 0, q → 1/2; nmax → 1, we go to the two-levels problem, where only the
ground (n = 0) and first (n = 1) levels can be existed and the other (n ≥ 2) levels are collapsed.
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In principal, with a given energy spectra E (n) we can define the classical turning points χ1,2 (n)
and then construct the effective potential by using the WKB approximation, but it is a inverse-
like problem and usually difficult to solve. In practical, because for many problems of atom and
molecular physics, quantum optics, condensed matter, ... only the ground and one or two first
excited levels are considered, so we propose to use our deformed-three-levels simple model, where
the set-parameters of Morse potential and the corresponding set-parameters of level deformations
are easily and explicitly defined.
Our level deformation model might be useful in investigation the problem of entanglement
entropy, when the environment or vacuum effects are taken in to account. This will be studied
in the our next work.
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