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Abstract. The ground-state electron energies, the mass correction and mass polarization 

of low and multiply charged helium-like ions are analytically and numerically 

calculated. Approximately 3500 different kinds of ions with charge Z = 2 ÷ 118 are 

considered. The two-electron Schrödinger equation was solved using a discrete 

variational-perturbation approach developed by the authors and based on explicitly 

correlated wave functions. This approach takes into account the motion of the nucleus 

and yields accurate values for the electron characteristics. The results are presented with 

and without the inclusion of the mass polarization in the minimization procedure. The 

relative importance of mass correlations and relativistic effects in the formation of the 

electron energy characteristics of the helium-like ions are studied for different values of 

Z. The role of the inclusion of the mass polarization in the minimization procedure as 

an instrument to present and take into account the effects induced by the nuclear 

properties, structure and characteristics has been shown.  

1.  Introduction 

Low and multiply charged helium-like ions are responsible for the properties and characteristics of low 

and high density plasma and for the processes occurring in it [1]. Helium-like ions exhibit specific 

properties due to the unscreened long-range Coulomb field of their nucleus. High-precision calculations 

of the electron ground-state energies of helium-like ions require to take into account the effects 

associated with nuclear characteristics and electron correlations. The nuclear size effects increase 

steadily with increasing atomic number. The nuclear motion gives an even more significant correction 

to the electron energy [2,3]. This leads to two specific contributions: finite-mass effect (mass correction), 

electron-electron (e-e) and electron-nucleus (e-n) correlations (mass polarization). While the latter 

increases with increasing nuclear charge number Z, the former varies very little [3].  

In our previous work [4], we calculated ground-state electron energies, mass corrections and mass 

polarization effects of helium isoelectronic ions with nuclear charge for the main nuclides from Z=2 

to Z=118.   
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Apart from including the mass polarization in the variational-perturbation procedure, we explored in 

Ref. [5] the role of the mass excess in both the mass correction and the mass polarization on the electron 

ground-state energies of helium-like ions with nuclear charge Z = 2 ÷ 118. Effects associated with 

nuclear properties and characteristics were taken into account for the first time. We have developed a 

perturbation method for solving the two-electron Schrödinger equation based on a variational principle 

using Explicitly Correlated Wave Functions (ECWF) of a generalized Hylleraas type [6]. The variational 

procedure leads to a generalized eigenvalue problem. This method has been applied to compute the 

electron ground-state energies taking into account both the mass corrections and the mass-polarization 

effects, as well as the inclusion of the mass polarization in the variational-perturbation procedure. This 

approach provides a general framework for taking into account higher-order effects like relativistic and 

QED corrections. This method is therefore very well-suited for high-precision calculations of plasma 

diagnostics. 

In the current work, the approach developed by the authors is used for studying the correlation effects 

of helium-like electron-nuclear systems, not only along the line of stability but also for the 3500 known 

nuclei around it. The calculations are made with and without the inclusion of the mass polarization in 

the minimization procedure. Analyzing the results shows some correlations between the energy 

characteristics of the ground state and the properties of the nuclei of the isotopes involved in the system. 

2.  Method 

Atoms with few electrons can be accurately described, taking into account correlations, by solving the 

Schrödinger equation 

𝐻̂𝛹 = 𝐸𝛹                                                                              (1) 

in the ECWF approach [6]. 

Let us consider two electrons with position vectors r1 and r2 in the Cartesian coordinate system with 

the origin at the nuclear centre. Introducing elliptical coordinates𝑠 = 𝑟1 + 𝑟2, 𝑡 = 𝑟1 − 𝑟2,  

𝑢 = 𝑟12 = |𝑟1 − 𝑟2|, the Hylleraas-type two-electron wave functions that we consider have the form [8]: 

|𝜓⟩ = ∑ 𝐶𝑆𝑇𝑈|𝑆𝑇𝑈⟩

𝑆𝑇𝑈

= ∑ 𝐶𝑆𝑇𝑈

1

𝜋√2
𝑒−𝑠 2⁄ 𝑠𝑆𝑡𝑇𝑢𝑈

𝑆𝑇𝑈

                                       (2) 

where S, T, U are positive integers, with T even as a consequence of the symmetry requirement of the 

spatial wave function. 

The non-relativistic Hamiltonian H is the sum of the kinetic energy T, the Coulomb attractive 

potential Ven due to the central nuclear charge, and the electron-electron repulsive potential Vee. If the 

Hylleraas wave function (2) is subject to a coordinate scaling transformation 

⟨𝑟1𝑟2|𝛹𝛼⟩ = ∑ 𝐶𝑆𝑇𝑈𝑒−𝛼𝑠 2⁄ (𝛼𝑠)𝑆(𝛼𝑡)𝑇(𝛼𝑢)𝑈

𝑆𝑇𝑈

                                            (3) 

(α being a scaling factor), then the overlap, kinetic, and potential matrix elements transform as 

⟨𝛹𝛼|𝛹𝛼⟩ =
⟨𝛹|𝛹⟩

𝛼6
, ⟨𝛹𝛼|𝑇|𝛹𝛼⟩ =

⟨𝛹|𝑇|𝛹⟩

𝛼4
, ⟨𝛹𝛼|𝑉|𝛹𝛼⟩ =

⟨𝛹|𝑉|𝛹⟩

𝛼5
                          (4) 

 

with 𝑉 = 𝑉𝑒𝑛 + 𝑉𝑒𝑒. The expectation value of the energy thus scales as 

⟨𝛹𝛼|𝐻|𝛹𝛼⟩

⟨𝛹𝛼|𝛹𝛼⟩
=

𝛼2⟨𝛹|𝑇|𝛹⟩ + 𝛼⟨𝛹|𝑉|𝛹⟩

⟨𝛹|𝛹⟩
                                                  (5) 
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3.  Mass corrections 

The variational calculation of the ground state energy using ECWF as trial two-electron wave functions 

yields a lower bound to the exact energy. To obtain a better estimate, it is necessary to include mass 

correction and mass polarization. The first-order correction is given by [2,3]: 

𝜀1 =
−𝜀

1 + 𝜀
𝐸0 ≈ −𝜀𝐸0                                                                  (6) 

where E0 is the electron ground-state energy and 𝜀 = 𝑚𝑒 𝑀⁄  (𝑚𝑒 being the electron mass and M the 

nuclear mass). This correction is independent of the atomic state. The second-order perturbation 

correction given by 

𝜀2 = 𝜀 ∫ 𝛻1𝛹∗(𝑟1, 𝑟2)𝛻2𝛹(𝑟1, 𝑟2)𝑑3𝑟1𝑑3𝑟2 = ⟨𝛹|ℰ|𝛹⟩                                     (7) 

depends on the atomic state as it involves the two-electron wave function. The matrix elements of ε2 can 

be obtained in an analogous manner as those of the kinetic energy operator and can be found in [2,3]. 

After a scaling transformation, the mass polarization (7) becomes 

⟨𝛹𝛼|ℰ|𝛹𝛼⟩ =
⟨𝛹|ℰ|𝛹⟩

𝛼4
                                                                  (8) 

4.  Variational method 

The energy is minimized by varying the Hylleraas wave function with respect to both the expansion 

coefficients CSTU and the scaling factor α. Variation with respect to the expansion coefficients leads to 

the generalized eigenvalue problem 

(𝛼2[𝑇] + 𝛼[𝑉])𝐶𝛼 = 𝐸𝛼[𝑂]𝐶𝛼                                                           (9) 

where T, V, O are the kinetic, potential, and overlap (symmetric) matrices respectively and 𝐶𝛼 is the 

column vector containing the expansion coefficients. The lowest eigenvalue 𝐸𝛼
0 obtained for a fixed 

value of α defines a function of one variable. Its minimum which can be found using standard techniques 

yields the best estimate of the ground-state energy. The variational-perturbation procedure is described 

in details in Refs. [4,5]. 

Solving the eigenvalue problem in (9) yields the values of the expansion coefficients CSTU and scale 

parameter α, corresponding to 𝐸𝛼
0. After subsiding these values in (8) we obtain the mass polarization ε2 

(7).  In order to include ε2 in the variational procedure, the operator of mass-polarization ℰ is added to 

the Hamiltonian. Then the expectation value of the energy becomes 

⟨𝛹𝛼|𝐻|𝛹𝛼⟩

⟨𝛹𝛼|𝛹𝛼⟩
=

𝛼2⟨𝛹|𝑇|𝛹⟩ + 𝛼⟨𝛹|𝑉|𝛹⟩ + 𝛼2⟨𝛹|ℰ|𝛹⟩

⟨𝛹|𝛹⟩
                                   (10) 

The variational equations (9) and (10) correspondingly are replaced by 

(𝛼2[𝑇 + ℰ] + 𝛼[𝑉])𝐶𝛼 = 𝐸𝛼[𝑂]𝐶𝛼                                                     (11) 

The inclusion of the mass polarization in the minimization procedure: i) improves by one order of 

magnitude the values for the ground-state energy of the helium-like ions; ii) gives the possibility to 

account for the effects induced by the properties and characteristics of the nuclei on the electron energy 

characteristics; iii) gives the possibility for calculating relativistic corrections according to the 

variational-perturbation approach. 

5.  Results and discussion  

The discrete variational-perturbation procedure we have developed for solving the two-electron 

Schrödinger equation gives us the possibility to obtain highly accurate values for the ground-state energy 

of the electron system, the mass correction and the mass polarization. The results obtained for Z = 2 ÷ 

10 are compatible with the most precise theoretical results available in the literature.  
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In Refs. [4,5], we have carried out a comparative analysis of the results obtained by Pekeris, Thakkar 

and Koga and our results (PM – Pavlov, Maruani, Mihailov et al) for the correlated ground state 

(nonrelativistic) energies E0 in atomic units (au) for helium isoelectronic ions, omitting the mass 

corrections with Z = 2 ÷ 10. Using the same method determinates the same accuracy for Z > 10. The 

nuclear masses used in our computations were derived from the tables of the mass excess, using the 

known relation: 

𝑀NUC = ∆ + 𝐴 − 𝑍𝑚𝑒 + 𝑏𝑒 , 

where Δ is the mass excess, A is the atomic number of the nuclide, Z is its charge and be is the module 

of the binding energy of the electrons.  

In the current work, we have considered the most stable isotopes using the data from Ref. [8]. 

Whereas precise calculations for the electron ground-state energy characteristics of the helium-like ions 

have been already performed for Z ≤ 10 [9 – 14], few theoretical calculations are available in the 

literature for Z > 10, for example in Refs. [9] or [15]. 

In figure 1 are plotted the absolute values of the ground-state energies E0pm, E0BS [3], E0FF [16] E0Kar 

[17] и Eexp [15]. All theoretical values are without any corrections and for E0FF and E0Kar the relativistic 

effects are not taken into account. Our results coincide with all of the presented theoretical results. As 

can be seen in figure 1, all theoretical results coincide for small Z and the deviations from experimental 

data appear at Z = 54 and increase with increasing Z due to the growing importance of relativistic effects. 

 

Figure 1. Comparison between ground state energies. 

 

When one derives all theoretical results by including all possible corrections, as follows: Epm – mass 

corrections ε1 and mass polarization ε2; EBS – mass corrections ε1; EFF – Hartree-Fock equations 

correlation factor and relativistic corrections; EKar – ε1 and ε2 corrections, by using two component wave 

function for the energy [18] the results are quasirelativistic as shown in figure 2. 

It can be seen that our results Epm practically coincide with the values obtained by the Bethe-

Saltpeter formula for nuclear charge Z = 2 ÷ 110. Our results coincide with those obtained using the 

Froese-Fisher code (relativistic case) and with the Karwowski results (again relativistic) for the nuclei 

with Z ≤ 54. For Z > 54, our results slightly diverge from those of Froese-Fisher and of Karwowski.  

Moreover, the differences increase with the nuclear charge. This can be easily explained considering 
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that the role of j-j coupling in the electron system increases with Z; for Z > 54 this coupling 

preponderates in regard to the L-S coupling. For Z > 76 only the j-j coupling remains. In addition, the 

contribution due to relativistic effects becomes progressively more important with increasing Z, while 

the contribution due to mass correlation effects fluctuates around some non-increasing value. 

 

 

Figure 2. Comparison between ground state energies with all possible corrections. 

 

 

Figure 3. Polarization correction ε2 in atomic units for different mass number A. Each vertical curve 

represents a single Z. 

 

In Ref. [5] we have shown that including the mass polarization ε2 (7) in the minimization procedure 

allows to establish a relation between electron-energy characteristics of helium-like electron-nuclear 

systems and properties of the underlying nuclei. This is the consequence of including the nuclear mass 

excess in the variational procedure through the operator of ε2 in the system Hamiltonian (10).  
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For nuclei along the line of stability, the oscillating nature of ε2 with Z was shown. The amplitudes 

of these oscillations were found to coincide or follow the nuclear magic numbers. In this way, 

conclusions can be drawn about the contribution of the nuclear properties and characteristics (for 

example shape and deformation) on the electron ground-state energy values. 

Figure 3 presents the polarization correction ε2 for each Z, depending on the mass number A. The 

results were obtained by studying helium-like electron-nuclear systems for about 3500 known isotopes 

of nuclei around the line of stability. The different length of the curves at the different Z is due to the 

different number of known isotopes around the line of stability. It can be seen that for each Z the values 

for ε2 fluctuate around a mean value 0.00003 au depending on A. When A increases, the absolute value 

of ε2 decreases with each Z. 

In figure 4 are presented the mass correction ε1 for each Z, depending on the mass number A. The 

different length of the curves at the different Z is again due to the different number of known isotopes 

around the line of stability.  

 

 

Figure 4 Mass correction ε1 in atomic units for different mass number A. Each vertical curve 

represents a single Z. 

 

Along the line of stability, the values of ε1 increase with Z proportionally to the increase of the 

electron system ground-state energy (6). Moreover, for each Z the ε1 absolute value decrease is 

noticeably less sensitive to the increasing of A. Therefore, it can be concluded that the effects of the 

nuclear properties, structure and characteristics are more explicitly included in the mass polarization ε2 

than in the mass correction ε1. And, as with the analysis of figure 3, ε2 demonstrates the effects of the 

nuclear characteristics and properties in the formation of electron energy magnitudes. 
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