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Abstract. It is argued that simple pendulums exhibiting Q values in excess of 108 can be realized 

by using high strength fibres to suspend in vacuum a bob of less than 10-3 kg. For a 1 m long 

pendulum this means damping time constants of several years, long enough to allow experiments 

in free decay mode, maximizing in this way the expected short term frequency stability. A dual 

pendulum experiment based on this projection is discussed, which common-modes seismic noise 

and is expected to yield 10-5 uncertainty on Big G. The value of the latter can be obtained from 

the variation in relative frequency difference between the two pendulums when they are 

subjected to well controlled variations of the gravitational field. A discussion is given of Type A 

and Type B uncertainty contributions, and a tentative accuracy budget is projected. 

1. Introduction 

The measurement of the Newtonian constant G is difficult for the feebleness of the gravitational force 

both absolute and relative to other forces associated with different phenomena, in the presence of which 

experiments aimed at measuring G must be carried out. This poses two orders of problems which are 

typically in competition, as both A and B Type uncertainties must be reduced below the desired level. 

On one hand, in fact, the need to avoid too low S/N ratios suggests privileging experimental designs 

yielding as great a signal as possible, even if it implies accepting hard to model features, putting in this 

way a stress on Type B uncertainty; on the other hand the choice of an approach which can be very well 

modeled often pays a tribute to S/N ratio, putting a stress on Type A uncertainty. It is no wonder that all 

efforts to measure G were undertaken with an S/N ratio maximizing approach, in an era when the high 

resolution now possible in measurements was unthinkable. However, a re-visitation of this trade-off is 

here suggested, at the light of contemporary amazing Time and Frequency Metrology resolutions. It is 

claimed that it may offset toward the latter end of the scale the positioning of the best approach choice. 

       As a matter of fact, while all ten evaluations of G reported in the 19th century, all four made in the 

first half of the 20th century (only one of which was claimed to have an accuracy better than 0.1%), and 

all those published after WWII and before 1990 by half a dozen groups, all were obtained with basically 

the same approach adopted by Henry Cavendish more than two centuries ago [1], substantially different 

experiments started to crop up thereafter. 

       Three facts concurred in steering the quest for G into new ways: theoretical doubts raising in the 

mid-80s on the validity of the Newtonian theory (the fifth force debate), a result with a discrepancy of 

many standard deviations from the accepted value which was published by a highly respected institution 

[2], and the discovery by Kuroda [3] of a possible source of error in Cavendish balances, hidden in the 

an-elasticity of the torsion wire. 

       As a result, at least a dozen different evaluations have been carried out in as many different groups 

in the last twenty years, a number of which have adopted a totally different approach from the torsion 

balance, using as a sensitive device either a beam (Jolly-Poynting) balance, or a free-fall gravimeter, or 

a simple pendulum, all avoiding in one way or another the torsion wire problem. 

       In the best experiment with the beam balance, carried out in Zurich [4], 1 kg test masses sat on 

either dish and 4 ton of Mercury were moved up above and down below one of the two. The 1.8x10-5 

final uncertainty claimed by the group is one of the best to date. A great deal of beautiful error analysis 

and correction was carried out in this high sensitivity experiment. 
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       The free-fall gravimeter is blessed by the absence of suspensions, but no uncertainties better than 

10-3 have yet been claimed as relative resolution is a problem. In fact, the measured gravitational force 

is compared directly to the attraction by the whole Earth. Despite the adoption of laser interferometry in 

one case [5], and atom interferometry in two more [6,7], requirements are so great that measurements 

remained limited in all cases by Type A uncertainty even after long averages. The positioning of the 

free-fall approach in the range of possible choices seems to be too biased toward error reduction at all 

cost, even for modern high resolution measurement technology, because the effect vanishes exactly 

where one would like to have it most strong, at the center of the active masses. 

       The simple pendulum approach was used in three experiments, two of which in the static mode. In 

both, two hanging test masses held Fabry-Perot mirrors whose spacing changed as an effect of active 

masses displacement. The measured quantity was the resonant frequency. In one case the latter was in 

the microwave range [8] and an accuracy slightly better than 10-3 was claimed, in the other it was in the 

visible [9] and the claimed accuracy was in the low 10-5 range. The third attempt, which employed a 

dynamic pendulum approach, is the small scale pilot experiment which was carried out at Politecnico 

di Torino [10] from 1998 to 2005. This preliminary trial yielded an evaluation of G with a seismic noise 

limited Type A uncertainty of 3%, nevertheless providing critical indications for this new proposal. 

Relevant for the accuracy of this and any dynamic experiment is the analysis, carried out within this 

work, of the frequency change that is induced by variations of the energy stored in the oscillations when 

the active masses are moved [11]. This approach can be viewed as using a “constrained free-fall”, which 

positions it less far out than the true free-fall toward the same end of the scale. In fact, the signal force 

is here compared to only a component of Earth’s attraction, which also vanishes at rest position. This 

maximizes the effect exactly where desired, contrary to the free-fall case, as argued in section 3. 

       In truth, some of the best results ever published to date, with uncertainties in the mid to low 10-5 

range, have been obtained in this post-Kuroda era with some variation of the torsion balance, including 

both static mode and dynamic mode operation. Two of these were obtained in the static mode, and 

claimed uncertainty of 1.38∙10-5 [12] and 4.05∙10-5 [13] respectively by avoiding altogether any torsion 

in the wire with the help of a feedback system that forced the moving apparatus to stay put. Similar 

accuracy was also claimed by a group at BIPM [14], where a strip was used for a torsion wire, in order 

to reduce shear strains in deflection, and the residual an-elasticity Kuroda effect was evaluated in 

dynamic mode operation. In another group, the an-elasticity of the torsion wire was measured separately 

[15], to evaluate the correction to be made in a dynamic mode measurement. 

      Unfortunately, in spite of progress made both with the traditional torsion balance approach and with 

other methods, significant discrepancies persist among different evaluations, which makes the 

CODATA Group cautious in citing uncertainty. At present, in the most recent CODATA 2014 revision, 

the relative uncertainty is indicated to be 4.7∙10-5 on a value of 6.67408∙10-11 m3kg-1s-2.  

       In recognition of the basic metrological principle that the only way to mitigate the risk of embarking 

unknown systematics in the assessment of a natural object is to obtain compatible results with many 

totally independent approaches (Karl Popper teaching here!), the present proposal is aimed at reaching 

the ultimate potential of the dynamic pendulum approach by overcoming with typical Time and 

Frequency Metrology methods the limitations of the pilot experiment. 

       A dual pendulum configuration is proposed, aimed at exploiting the fast reduction of statistical 

uncertainty granted by measuring the variation rate of time delay between the two, which is well known 

to be equal to their relative frequency difference [16], and at the same time common-moding the relevant 

0.2 Hz seismic angular noise due to ocean waves excited Rayleigh waves [10,17] which disturbed period 

measurement in the pilot experiment. The inferred possibility of reaching pendulum Q values in excess 

of 108 enables free decay operation for months, high frequency stability, and the projection of 10-5 

uncertainty on G in a few weeks of data taking. 

       In section 2 the critical point of such high Q values possibility is addressed, as it has direct impact 

on design, and in section 3 the plan of the experiment is described. In section 4 the projected accuracy 

budget is presented and shortly discussed, with an indication of expected future improvements. 
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2. Q analysis  

To be sure, a well-known truism is that a high Q factor is fundamental for both Type A and Type B 

uncertainties in an experiment involving an excited resonator, because it generally fosters high short 

term frequency stability and guarantees for the ability to closely model it. In the torsion balance, for 

example, a high Q can be taken as a proof of low torsion wire an-elasticity and support high accuracy 

claims in the analysis of the Kuroda effect, as in the case of the BIPM experiment, which featured a Q 

of 105, the best ever reported in torsion balances for big G determinations. 

       However, further specific reasons to seek as high a Q as possible in this dual dynamic pendulum 

configuration include noise filtering action, the need to avoid frequency locking of the two pendulums, 

and the beauty of long ring-down time constant. In particular, the latter can be as long as several years 

for a 1m long pendulum with Q in the mid-108 range, which would enable a several months long 

experiment in free decay mode, avoiding both the risk of noise injection with the sustainment mechanism 

and the frequency drift deriving from the coupling of period and amplitude if the latter is not constant. 

       Apart from friction on residual air, which however can be reduced below any desired level with 

adequate vacuum, only two main loss mechanisms were identified in a fibre pendulum realized as 

pictured in figure 1: the cyclic stretching of the fibre under the action of varying centrifugal force and 

gravity component along the fibre, and the cyclic bending of the fibre as it wraps and unwraps onto the 

suspension profile. The latter is assumed circular in figure 1 for ease of implementation reasons, and 

because a circular profile turns out to produce a minimum at non-zero amplitude in the period versus 

swing angle curve, which can be exploited to make the pendulum locally isochronous [18]. 

       A first approximation theory can be developed for the contributions of these two mechanisms to 

pendulum Q by overlooking the cyclic length variations. Expressions for Qs (stretching) and Qb 

(bending) can be rather easily obtained with this simplification, and then combined to predict Q as 

1

𝑄
=

𝑃𝑑𝑠+𝑃𝑑𝑏

𝜔𝑝𝐸𝑝
=

1

𝑄𝑠
+

1

𝑄𝑏
  , (1) 

where the index p of resonance angular frequency p and of energy Ep stored in the oscillation indicates 

that they are relative to the pendulum mode, and dissipated power Pd of the two mechanisms is identified 

by the second index s or b. Such power can be written for both as a function of pendulum frequency and 

energy, as in equation (1), but also as a function of eigen-frequency and stored energy of the mode that 

sustains either loss mechanism, i.e. the stretching and the bending mode. In this latter case the Q value 

that must be used in the formula is the intrinsic value Qf of the fibre material, which can in principle be 

measured by exciting the relevant stretching or bending mode. In practice, this can be easily done on 

Earth only for the stretching mode because selectively exciting the bending mode to measure frequency 

and Q would require a gravity free experiment. So it is 

𝑃𝑑𝑠 =
𝜔𝑝𝐸𝑝

𝑄𝑠
=

𝜔𝑠𝐸𝑠

𝑄𝑓
  , (2) 

𝑃𝑑𝑏 =
𝜔𝑝𝐸𝑝

𝑄𝑏
=

𝜔𝑏𝐸𝑏

𝑄𝑓
 . (3) 

Notice that Es and Eb represent the energy stored in the stretching and bending modes when they are 

excited out of frequency at the natural pendulum resonance p and at the actual swing amplitude 0.  

       Now, for the stretching mode, it turns out that the energy Es stored in it, swapping at double the 

pendulum frequency between elastic and kinetic energy, is related to pendulum energy by 

𝐸𝑝

𝐸𝑠
=

16

9𝜃0
2𝜀0

  , (4) 

where 0 is the static strain, and the ratio between pendulum and stretching mode frequency is easily 

seen to be 

𝜔𝑝

𝜔𝑠
= √𝜀0   , (5) 
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so that, by combining equations (2), (4) and (5), the following expression is obtained for the contribution 

to pendulum Q from the stretching mode 

𝑄𝑠

𝑄𝑓
=

16

9𝜃0
2√𝜀0

  . (6) 

       Similarly, for the bending mode, ratios relating energy Eb stored in it to pendulum energy, and its 

natural frequency to pendulum frequency, can be shown to be 

𝐸𝑝

𝐸𝑏
= (

𝜔𝑝

𝜔𝑏
)

2
=

𝐿𝐷𝑏

𝐷𝑓
2 𝜀0𝜃0  . (7) 

The frequency ratio can be derived easily by equating the peak potential elastic energy stored in the 

fibers to the peak kinetic energy calculated in the sine wave approximation. The contribution to 

pendulum Q from the bending mode can then be calculated by combining equations (3) and (7), and is 

𝑄𝑏

𝑄𝑓
= (

𝐿𝐷𝑏

𝐷𝑓
2 𝜀0𝜃0)

3
2⁄

. (8) 

The combination of these two contributions leads to the values shown in figure 2 for the total Q of the 

pendulum as a function of oscillation amplitude 0 in various configurations of circular suspension 

diameter and fibre type. It is here assumed that the mass of the bob be 0.16 g, which was the mass of 

the 5 mm BK7 ball lens used in the pilot experiment, for which the lowest curve holds. 

 

 

 

Figure 1. Pendulum configuration 

and parameters definition. Circular 

suspension profiles were chosen for 

ease of precise implementation and 

coherence between design and theory. 

 Figure 2. Pendulum Q values calculated for various 

fibres and suspension diameters. The two dots are 

measured Q for the pilot experiment. Their agreement 

with the theory supports its validity, and the confidence 

that it may be extrapolated to different configurations. 

       The selection of suitable fibres is mainly guided by equations (6) and (8), summarized in figure 2, 

which suggest looking through thin high stiffness fibres for Q maximization. However, it must be 

pointed out here that characterization of mechanical losses in such high strength fibres is typically not 

to be found in the technical literature. The intrinsic Q of candidate fibre materials was therefore 

measured in order to produce the results reported in figure 2. This was done by evaluating the Q of a 

spring-mass resonator in which the spring was a bundle of a reasonably well known number of fibres. 

Qf values of 120, 470, and 1000 were found for Para-aramidic, SiC, and Carbon fibres respectively [19]. 

       Clearly, the pendulum configuration should be designed for maximum Q at the desired oscillation 

amplitude, which in turn must be decided in considering issues like a good match with minimization of 

period and ease of correlation between measured frequency departure and gravitational effect.  
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3. Planning the experiment 

The experiment which is being implemented includes two 1 m long pendulums oscillating in the same 

plane about 100 mm apart, and an ensemble of cylindrical Tungsten masses laying either side of such 

plane, outside the vacuum container, with a small separation in between, where the bob swings inside 

the container. The bob is a 5 mm diameter BK7 ball lens suspended by two converging fibres which 

wrap and unwrap on two cylindrical profiles as depicted in figure 1. The arrangement removes the 

degeneracy with the transversal mode and obliterates undesired Coriolis effects. Active masses are 

moved periodically back and forth in the two configurations of figure 3, alternately with one pendulum 

swinging between two pairs of masses and the other in the gap for half the repetition period TR and vice-

versa for the other half. Half the calculated acceleration aM added by the active masses system, divided 

by the acceleration due to Earth’s gravity ag, is shown in figure 4 versus pendulum distance from system 

center. More details are given below, where the near equality between such half ratio and the relative 

frequency shift is discussed. If perfect equivalence between the two is assumed for the time being, the 

difference between the two relative frequency differences is twice the sum of aM/ag for both pendulums. 

 

  

Figure 3. Scheme of the two configurations of active masses. 

Rest positions of the two bobs are shown by black dots. 

Subtracting the relative frequency differences in the two 

configurations doubles the sum of both relative shifts. 

Figure 4. Relative extra acceleration 

versus distance from center for the 

Tungsten masses of figure 3. Frequency 

shifts are roughly equal to ½ aM/ag.  

In either configuration the time delay rate of change between the two pendulums is measured with two 

optical high resolution Position Sensitive Detectors (PSD) at the bobs’ rest points [10], which in 

principle yields their relative frequency difference in the most precise measurement of any quantity 

made available by modern Metrology [16]. This fact, together with the common-moding of angular 

seismic noise that the dual pendulum solution can provide, makes of this proposed scheme a totally new 

experiment, and not “just an incremental improvement” on the pilot experiment any more than most G 

determinations have been with respect to the original Cavendish experiment. 

       A slight mistuning must be imposed between the two pendulums to keep signal injection induced 

frequency pulling low, but this is really easy given the high projected Q values for the pendulums. In 

fact, even at high coupling (e.g. 10-2) a relative mistuning of 10-8 is more than adequate [20,21] to keep 

pulling below the 10-12 level that would start to be relevant for the target 10-5 accuracy. It would be hard 

to avoid such mistuning, but at any rate a rational frequency ratio (n-1)/n is here planned between the 

two, in order to get them back in phase every n periods, and design the period of such occurrence. 

       Delay data will be taken at such times in order to guarantee adequate Common Mode Rejection 

(CMR) of the angular seismic noise that introduced on the single period measurement a white noise 

level of the order of 3 s in the pilot experiment. It must be pointed out here for clarity that angle noise 

in the oscillation plane is not filtered by the pendulum Q, as it amounts to a rotation of the laboratory. 

As ocean waves excited angular noise at 0.2 Hz is sampled at pendulum frequency, such angle noise 

comes by aliasing to be white delay time noise. Regression on N delays will then improve it by N-1/2, 

and division by NT to get the slope will yield a relative frequency resolution y() that improves as N-3/2 

upon averaging N results [16]. If the necessary 2 to 3∙10-12 Type A uncertainty is desired in 104 s (about 

2.5 hours, or 250 measurements of 40 s), the single shot y() should then be about 10-8, which places 

at 4∙10-7 the needed single differential delay uncertainty (≈300 ns on single delay). This represents a 

factor of 10 CMR of angular seismic noise at 0.2 Hz. Such noise should in principle be sampled at the 

same instant for the two pendulums in order to be perfectly rejected, and the maximum time delay 

between the two that is acceptable for the desired rejection must be studied. 
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       So, while the rms period uncertainty Trms produced in the pilot experiment by the Rayleigh-waves 

quasi-coherent angle noise of rms value rms was 

𝛿𝑇𝑟𝑚𝑠 =
√2

𝜔𝑝

𝛿𝜃𝑟𝑚𝑠

𝜃0
  , (9) 

the rms delay uncertainty t)rms produced in this experiment by the same angle noise, if the measured 

delay is t, can be easily shown to be 

𝛿(∆𝑡)𝑟𝑚𝑠 = ∆𝑡
𝜔𝑅

𝜔𝑝

𝛿𝜃𝑟𝑚𝑠

𝜃0
    (10) 

when calculated from the time derivative of the quasi-sine-wave angular noise at the frequency R of 

Rayleigh waves. From the ratio of equations (9) and (10), the maximum delay can be calculated at which 

a given minimum CMR of the bright angular seismic noise spectral line is obtained in the dual pendulum 

configuration. For equal amplitude 0 in the two experiments, the constraint is 

∆𝑡 <
√2

𝐶𝑀𝑅 𝜔𝑅
   . (11) 

For the actual frequency of Rayleigh waves and the desired CMR, equation (11) indicates 100 ms as the 

maximum acceptable delay. This is the reason why a rational (n-1)/n frequency ratio is designed for the 

two pendulums, so that every n periods they be in phase at the detector location. On the other hand, 

since every period the slower pendulum’s delay increases by about T/n, the minimum value of n that 

guarantees at least one delay measurement of less than 100 ms at that time is 20, because the pendulum 

period is about 2 s. The choice of n=21 is proposed here only for discussion purposes. Greater values 

would offer more useable delay data per coincidence but increase their distance in time.  

       The relevant time delay slope s is indicated in figure 5 in the delay-versus-time space. Instrumental 

resolution is clearly not a problem for a desired delay uncertainty of 300 ns, nor is a particularly accurate 

reference frequency necessary of the time interval counter. 

     

Figure 5. Measured time delay rate (slope s). 

Dots are ticks from the slow pendulum. 

Figure 6. Delay slope changes as active masses 

are moved from slow to fast pendulum and back. 

       In figure 6, a picture is given of how time delay slope is expected to change when the center of the 

active masses system is moved back and forth between left and right pendulums. The relevant 

information for the extraction of a G value is the difference s=sf -ss between the slopes measured with 

active masses centered on the fast pendulum and the slow one. In fact, it can be easily shown that s is 

directly proportional to the average of relative frequency shifts yMf and yMs induced by active masses on 

fast and slow pendulum respectively. With slopes calculated as (t2-t1)/(nTf), the slope difference is  

∆𝒔 =
𝒏−𝟏

𝒏

𝑻𝒔

𝑻𝒇
𝟐(𝒚𝑴𝒇 + 𝒚𝑴𝒔) ,   (12) 

where the ratios Ts/Tf and (n-1)/n were not simplified because in the actual experimental arrangement 

they may not exactly compensate as they should. 

       As for the calculation of the gravitational effect on frequency, the relative extra acceleration given 

to the bob by the active masses system is the relevant parameter because, inasmuch as the oscillation of 

the bob’s displacement x is a sine wave, by the second law of dynamics its angular frequency is given 

by 
2 = (ag+aM)/x, with ag=gx/L and M the angular frequency as modified by the active masses.  
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       Both ag and aM vanish at both rest positions, but their ratio doesn’t, as both are linear in x for small 

displacements. However, neither is strictly linear, which yields the well-known non-isochronism of the 

simple pendulum plus, relevant for this experiment, a non-trivial tie between extra gravitational pull and 

induced frequency shift. So, while it’s easy to find frequency and relative shift for small oscillations, as 

the relative extra acceleration can then be considered constant over the swing, non-trivial calculations 

are necessary for wider swings. In the small oscillation limit it is 2yM= aM/ag at first order, as it can be 

promptly seen. A quick analysis of the arrangements shown in figure 7, with two equal active masses 

symmetrically placed on either side of the bob, yields for the effect of the two masses on one pendulum   

    𝜔𝑀 = 𝜔𝑝(1 + 𝑦𝑀) = √
𝑔

𝐿
 (1 +

𝜌𝑀

𝜌𝐸

𝐿

𝑅𝐸
(

𝑅

𝑎
)

3
Γ(0))  ,             (13) 

where  is the value taken at x=0 by the geometrical factor function (x), which depends on shape 

and positioning of the active masses system. In equation (13) M and E are the densities of active masses 

and Earth respectively, and RE is the Earth’s radius, L depends on the pendulum that is considered, being 

Lf for the fast and Ls for the slow one, and R and a are defined in figure 7. For spheres sph =1 and for 

cylinders cyl=(a/R)a2w/{⅔(a2+w2)3/2}, which comes to the value 3/(4√2), or roughly ½, if a ≈ w ≈ R. 

       For wider oscillations the shift can’t be figured out so easily as in equation (13) because the relative 

extra acceleration depends on x, which imposes a non-trivial integration in extracting a G determination 

from frequency shift data. In order to minimize the impact of this fact on uncertainty, the choice is made 

here to opt for cylindrical masses because of the considerably higher uniformity of cyl(x) as compared 

with sph(x) of the spherical ones. Both geometrical factor functions are responsible for the shape of 

curves shown in figure 8, and the rationality of the choice appears obvious when considering that Q 

maximization imposes for the swing amplitude 0 values of the order of those highlighted in the figure. 
The signal size price of choosing cylinders may appear steep in view of the already tiny effect, but the 

gain in accuracy of G value extraction is so great that it’s judged to offset it more than adequately. 
 

a)  b)  

  

Figure 7. Experimental arrangements for 

spherical and cylindrical active masses. The bob 

swings in the centre of the gap between masses. 

Figure 8. Profile versus  of the ratio aM/ag for a 

1 m long pendulum. Tungsten active masses are 

assumed, with R=50 mm and w/a=1.25. 

  Full expressions of (x) used in figure 8 for both cases, written with = w/a and = x/a, are 

 Γ𝑠𝑝ℎ(𝑥) = (1 + 𝜉2)−3/2  , (14) 

Γ𝑐𝑦𝑙(𝑥) =
3

4

𝑎

𝑅𝜉
(

1

√1+(𝜂−𝜉)2
−

1

√1+(𝜂+𝜉)2
)  , (15) 

Equation (15) was used as a basis to calculate the local acceleration profile shown in figure 4 for the 

case of seven twin cylindrical active masses. In that case, the reported acceleration is calculated as a 

function of the rest position of the bob, with the aim of illustrating how the frequency shift is symmetric 

around zero when the system of masses is moved by the separation between pendulums. In fact, it can 

be easily seen that an infinite periodic structure of active masses would yield a perfectly periodic and 

symmetric function of position. It turns out (see figures 9 and 10 below) that the system of seven pairs 

shown in figure 3 is enough to keep well below 10-4 the relative acceleration variation around the rest 

positions of the two pendulums, up to peak swing amplitudes suitable for Q maximization. 
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4. Accuracy budget 

The formula by which the value of the Newtonian constant G can be extracted from the measured value 

of s as illustrated above can be derived by inverting equation (13). For a single pair of cylinders is 

𝑮 =
𝝅 𝚫𝒔

𝝆𝑴(𝑻𝒇
𝟐+𝑻𝒔

𝟐)
 

𝑹

𝒘
 [(

𝒂

𝑹
)

𝟐
+ (

𝒘

𝑹
)

𝟐
]

𝟑/𝟐

   (16) 

Periods Tf and Ts in equation (16) are the small oscillation values for fast and slow pendulums, and must 

be derived from measured periods by taking into account non-isochronism. However, the correction can 

be made very accurately if the sweet locally isochronous spot of the minimum in the period versus 

oscillation amplitude curve is chosen as an operation point, because the mathematical model can provide 

in this case an adequately accurate prediction of the error [18]. To better than 0.1% the relative value of 

such error turns out to be -1.8∙10-5 for our 1 m pendulums if Db = 20 mm (see figure 1), and it occurs at 

0= 0.017 rad. It appears safe to assume that its contribution to G accuracy may smaller than 10-7.  

       For the planned seven mass pairs of figure 3 the inversion formula is more complicated because the 

geometrical factor must take into account all seven contributions. This is not hard for the symmetric 

positioning, with the bob at the center of the system, but more complex when it turns asymmetric with 

the bob laying at gap center. Uniformity can be trimmed in both locations by careful design of the 

cylindrical mass pairs’ shape factor = w/a.  Numerical results for uniformity at the two bob positions 

are shown for the seven twin masses case in figures 9 and 10. Mass pairs with shape factor  = 1.264 

and length 2w = 100 mm are assumed, 72 mm in diameter and spaced by 7 mm to host the 5 mm bob 

and thin vessel walls. Given the uniformity shown for this geometry, it appears reasonable to believe 

that the integration necessary for connecting G to s may be feasible with few percent accuracy, leading 

to a contribution to accuracy below 10-6. Most of the burden is then left to geometrical accuracy. 

 

  

Figure 9. Relative effect at system center from 

seven twin active masses. Reference for both 

distance and acceleration is at system center. 

Figure 10. Relative effect at first gap center from 

seven twin active masses. Distance reference is at 

system center; acceleration at gap center. 

       Accuracy on geometry of the active masses system sets the limit for the experiment. In fact, 

differentiation of the geometrical factor function in equation (16) yields for length and diameter of the 

active masses a severe constraint of less than 0.5 m for an accuracy contribution of 6∙10-6 on G. 

However, given the high accuracy of mass measurements, this condition may be relaxed if R is trimmed 

to reach a given mass (about 7.9 kg for the described Tungsten masses) after cylinders are cut to length, 

because the bias imposed on the radius will then be R/R = -w/2w, where w is the unknown length 

error, and the resulting G bias then indicates the less severe constraint of 1 m for length uncertainty. 

       Unfortunately, no such compensation can be done on the spacing between the twin cylinders, and 

the sensitivity calculation then yields for it a harder requirement of 400 nm uncertainty for 6∙10-6 on G. 

       Temperature sensitivity of active masses system geometry is also an issue, as their indicated 

necessary dimensional accuracy is of the order of 10-5, which requires the non-trivial temperature 

accuracy and stability of 2 K for the Tungsten masses. No particular problem is instead foreseen for the 

spacing because of its smaller dimension, which allows a temperature tolerance of about 10 K.   
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       More benign is the requirement on positioning of the bob’s trajectory with respect to active masses. 

In fact it turns out that both in the horizontal and vertical direction the extra acceleration features an 

extreme versus trajectory positioning, as shown in figure 11 and figure 12 respectively: a minimum in 

the center for the lateral direction, and a maximum a little above masses’ gravity centers for the vertical. 

The vertical displacement of the maximum is due to the vertical pull down that active masses exert if 

they are lower than the bob, which adds to Earth’s gravity and hence to recall force. For cylinders, such 

maximum is (a2+w2)/3L above the masses’ gravity centers (more than 2 mm for the planned size), and 

the relative shift is below 7∙10-4, which imposes an easy 50 m tolerance to active masses geometry for 

a 10-6 accuracy contribution from uncertainty on its value. Also, trajectory position tolerance for a safe 

2∙10-6 uncertainty contribution is ±0.1 mm in both directions for cylinders of the planned size, just a bit 

wider than what would be needed for the spheres vertically, but more than three times horizontally. 

 

  

Figure 11. Relative variation of extra pull for 

lateral displacement of the bob’s trajectory from 

active masses symmetry plane. The dashed line 

sets bob centering tolerance for 10-5 accuracy. 

Figure 12. Relative variation of the relevant effect 

for vertical displacements of the bob’s trajectory 

from the plane of mass centers. Position tolerance 

for 10-5 accuracy is marked by dashed lines. 

       A summary of the accuracy discussion spelled out here is given in Table 1. It appears that only 

geometrical uncertainties are expected to be relevant at the level of 10-5, which ushers the possibility of 

doing even better if resources were to become available to improve geometrical accuracy.  

 

Table 1. Accuracy budget projection based on 1 m long 7.5 m Carbon fibres, 20 mm diameter 

suspension profiles, a swing amplitude of 0.017 rad, and a 160 mg bob. Density uniformity is assumed 

adequate to guarantee positioning uncertainty of the mass center of active masses smaller than 300 nm. 

For relaxation of dimensional accuracy demand, the diameter of active masses is assumed to be 

trimmed for accurate mass once the 2w length is realized to match the distance between pendulums. 
Effect Relative bias Uncertainty              conditions  

 dependence of aM <3∙10-5 <10-6 Optimization of w/a  

Shift at bob’s vertical position 6.7∙10-4 <10-6 < 50 m uncertainty in a , w  

bob’s vertical position 0 2∙10-6 0.2 mm full interval tolerance  

bob’s lateral position 0 1.7∙10-6 0.2 mm full interval tolerance   

Adiabaticity <-2.5∙10-5 2∙10-6 0.017 rad swing amplitude [11]  

Non-isochronism -1.8∙10-5 < 10-7 Operation at minimum of period  

Spacing between twin masses 0 6∙10-6 0.4 m gap uncertainty  

Active masses dimensions 0 6∙10-6 0.9 m uncertainty with mass trimming  

Active masses density 0 5∙10-6   

Total Type B  1∙10-5 (Σ𝑢𝑖
2)1/2  

Total Type A  < 3∙10-7 In three months (based on 3∙10-6 in 1 d)  
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5. Conclusions 

A new experiment was presented for the determination of the Newtonian constant, which is based on a 

Time and Frequency Metrology approach consisting in the measurement of the small frequency 

difference between two freely oscillating pendulums via their time delay rate of change. A system of 

dense active masses is moved back and forth between the two, alternately increasing one frequency and 

reducing the other, and vice-versa. The increase in resolution by averaging is fast in this case because 

the limiting noise is white delay noise, which yields y() proportional to  -3/2. This fact is unique among 

experiments for the determination of G, and offsets the poor signal size problem allowing to focus the 

design on accuracy rather than S/N ratio. A preliminary experiment is in progress to confirm the 

possibility, indicated by the analysis, of obtaining Q values in the 108 range for the pendulums in 

vacuum, and the construction of the dual pendulum experiment is under way. It is expected that an 

accuracy of 10-5 may be obtained for G with the proposed approach, and that it may be possible in a 

metrology laboratory to reduce limiting geometrical uncertainties enough to push it into the 10-6 range.  
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