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Abstract. Scenarios of the transition to turbulence in overturning lee waves generated by the 

two-dimensional obstacle in a stably stratified flow have been explored by visualization of 

velocity and scalar (density) fields, with analysis of spanwise spectra. The results are obtained 

by numerical solution of the continuity, Navier–Stokes and scalar equations for stratified flu id 

with the Boussinesq approximation, for varied Reynolds and Prandtl numbers relat ing to tank 

experiments, situations in atmosphere and oceans. Based on the computed data, the dependence 

of the most unstable perturbation wavelength on Reynolds and Prandtl numbers  is derived. 

1.  Introduction 
The results of scanning in the space of physical parameters (Reynolds number Re = UH/ν, Prandtl 
number Pr = ν/κ) are presented for instability and turbulence development scenarios in overturning 
internal lee waves generated by the two-dimensional cosine obstacle of height H in a stably stratified 
flow with the constant values of inflow density gradient and velocity U. Such a phenomenon is studied 
by visualization of velocity and density fields, with analysis of spectra obtained from DNS/LES data at 

10
2 
≤ Re ≤ 10

4
, 1 ≤ Pr ≤ 700, relating to tank experiments [1-3], atmospheric and oceanic situations. 
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Figure 1. Pathlines, t = 17.5, y = 0 (a); density contours, x = 2.5 (b) in DNS at Re = 4000, Pr = 1. 
 
The single case (Re = 4000, Pr = 1) was recently examined by DNS in [4,5] (figure 1). The grid 

resolution was sufficient to capture the fine-scale transition processes studied in [4] and the subsequent 
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developed turbulence discussed in [5]. For this set of parameters, secondary instability of the density 
field arising after wave overturning reveals a range of spanwise modes. The smallest mode (λy ~ 0.5H) 
represents oscillations of Rayleigh–Taylor instability (RTI), growing and resulting in convective 
mushroom-like structures with associated Kelvin–Helmholtz instability rolls. At late transition times, 
the smaller-scale vortices transform into the larger structures, and another noticeable mode (λy ~ 2.5H) 
is dominant when the large-scale toroidal vortex structures become evident [4]. This large-scale mode 
can be associated with the most unstable perturbation of the initial two-dimensional vortex pair in the 
wave-overturning place [4,5] and has also been detected in [2,3,6]. For higher Pr, the earlier and faster 
RTI growth with smaller-scale structures is observed in LES with Pr = 700 [7]. 

The more comprehensive study can be performed, with variation of physical/numerical parameters 
and conditions of computations: in particular, by means of multiple runs with varied Reynolds and 
Prandtl/Schmidt numbers. Reduction of Re (e.g. runs at Re = 2000, 1000, 500, 200, etc.) will allow us 
to even further refine the resolution due to larger relative values of Kolmogorov microscale η/H at 
smaller Reynolds numbers, thus to obtain better statistics in the turbulent patch. Another aim is to see 
the Re effect on transition details and quasi-steady turbulence. Runs at varied Re may give the light on 
the ‘critical’ Re value (Re1) for onset of instability. This means that at Re < Re1 all perturbations 
introduced in the region of internal wave overturning (e.g. white-noise seeding) will decay with time, 
and no structure will appear and transit to turbulence. On the other hand, at Re > Re2 and depending on 
the grid resolution Δx/H, the DNS or implicit LES approach may become inadequate (as shown, e.g. 
by high-wavenumber parts of spectra), and for parameterization of smaller eddies of sub-grid scales 
(SGS) we will need then to introduce the SGS model. At Pr = 1, it is evident that Re2 > 4000 [4,5], so 
extra runs at larger Reynolds numbers, e.g. at Re = 10

4 
as in [1,3,8], would be of interest. 

The aim of the Pr variation between 1 and 700 is to find the ‘critical’ values too, in particular, for 
DNS limitation, Pr2(Δx) (for instance, at Re = 4000 we have 1 < Pr2 < 700 for the resolution used in 
[4,5]), and approach to real situations: (1) non-isothermal atmosphere (Pr ~ 1), (2) non-isothermal 
water reservoir with Pr ≈ 7 at normal temperature, (3) salted water in ocean estuaries (Pr ≈ 700). It 
could be also interesting to address the dependence on Froude number and geometry of the obstacle, 
however, such an issue has already been explored in various experimental and numerical studies (e.g. 
in [1,8]). Moreover, from the point of view of flow physics and relevance for applications, dependence 
on values of Re and Pr seems to be more crucial. 

2.  Governing equations 
The continuity, the Navier–Stokes and density equations for stratified fluid with the Boussinesq 
approximation are written in [4,5], as well as details of their realization. 

3.  Results and discussion 
DNS results with fixed Pr = 1 at lower Re value (than in [4,5]) show that, for instance, for Re = 1000 
(figures 2–5) multiple peaks in spanwise spectra (0.6H < λy ≤ 2.0H) occur during perturbation growth 
at 25 < t < 40. The most unstable perturbation wavelength corresponding to the RTI mode during the 
exponential growth stage (30 < t < 35) is λy ≈ 1.1H according to figures 4–5. The large-structure mode 
λy ≈ 3.3H arises during the turbulent patch stage at t > 48. The larger RTI structures (in comparison 
with the Re = 4000 case in [4,5]) evidently occur due to stronger viscosity/diffusion effects. These 
effects also cause delay of the instability and turbulence development, and smaller density drop 
between heavier and lighter fluid tongues (figure 3). 

For Re = 500, one can find (figure 6) almost persistent dominance of the spectra peak with 
wavelength λy ≈ 2.0H (corresponding to the late RTI growth at 45 ≤ t ≤ 50), as well as two weaker 
peaks with λy ≈ 0.9H at 45 ≤ t ≤ 60 and λy ≈ 3.3H at t > 48. For both cases, Re = 500 and 1000 (as well 
as for Re = 4000 studied in [1,2]) one can see the large-structure enlargement with time growth. 

For Re = 200, the spanwise instability magnitude is quite low (not visible in density contours) and 
does not lead to turbulence development, i.e. the critical value is within 200 < Re1 < 500 at Pr = 1. 
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Figure 2. Instantaneous pathlines at Re = 1000, Pr = 1 for t = 25, 30, 34, 40 and y = 0. 
 

   
 

   

Figure 3. Instantaneous density contours at Re = 1000, Pr = 1 for t = 25, 30, 34, 40 and y = 0. 
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Figure 4. Instant density contours at Re = 1000, Pr = 1 (t = 20, 25, 30, 32, 33, 34, 35, 40, 60, x = 2.5). 
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Figure 5. Spanwise spectra of scalar variance at Re = 1000, Pr = 1 (averaged at 1.25 ≤ x ≤ 5.00 and 
1.25 ≤ z ≤ 3.75) during: (a) white-noise perturbation decay (dashed lines) and RTI growth (solid lines), 
(b) transition to quasi-steady turbulence (with rough relaxation to a single line). 

 
(a)           (b) 

   

Figure 6. The same as in figure 5 for Re = 500, Pr = 1. 
 

For Re = 10
4
, the numerical noise becomes evident at large-wavenumber parts of spectra at late 

times corresponding to turbulent stages where the inertial range (k
−5/3

) should be followed by larger 
slopes at higher k  corresponding to dissipative ranges for both velocity and scalar spectra. In contrast, 
after the inertial range at 0.5 < k y < 2.5, we observe lower spectra slopes (~ k

−1
) at higher wave 

numbers 2.5 < k y < 10 (figure 7) which indicates an excessive spurious numerical noise appearing 
because of poor resolution (or absence of SGS models to suppress such a noise). Therefore, the second 
critical value is within 4 000 < Re2 < 10 000 at Pr = 1, i.e. someone has to apply finer grids or LES 
techniques at Re > 4 000 to predict the small-scale flow features adequately. 

In contrast to the Pr = 1 case, runs with the higher value Pr = 700 at Re = 200 do show the RTI 
growth with the most unstable perturbation wavelength λy ≈ 2.0H (figures 8 and 9), where the scalar 
spectra at the developed turbulent stage (t > 60) reveal not only the inertial range (k

−5/3
), but also the 

viscous-convective range (k
−1

) at higher wave numbers. The latter confirms the Batchelor’s theory for 
Pr >> 1, whereas measurements could not capture this fine effect [9]. Note that we should be cautious 
here since this may be also affected by the density field under-resolution which seems to yield the 
same effect of smaller spectra slopes for high-wavenumber parts of spectra (figure 7). 
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Figure 7. The same as in figure 5 for Re = 10
4
, Pr = 1. 

 

 

 

 

 

 

Figure 8. Instantaneous density contours at Re = 200, Pr = 700 for t = 40, 42, 44, 46, 48 and x = 2.5. 
 

 

 

 

Figure 9. Spanwise spectra of scalar fluctuation 
variance for Re = 200 and Pr = 700 (averaged at 
1.25 ≤ x ≤ 5.00, 1.25 ≤ z ≤ 3.75). 

 Figure 10. Instantaneous contours of density for 
Re = 4000, Pr = 7 (t = 19, y = 0), to be compared 
with figure 3 for Re = 1000, Pr = 1 (t = 25, 30). 
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For intermediate value Pr = 7, we still observe the transition to turbulence at low Reynolds number 
Re = 200 due to the RTI growth (which occurs quite late), in contrast to the case of Pr = 1. Note that at 
Pr = 7 the first critical value is within 100 < Re1 < 200, whereas the second critical value is within 
2000 < Re2 < 4000, since the numerical density-field noise affects the high-wavenumber part of 
spanwise scalar spectra starting from Re ~ 4000 (and for Re = 2000 such an effect is not visible). 

It is surprising that for Re = 4000 and Pr = 7 the RTI periodicity is seen not only along the span, 
but also in the streamwise direction as shown by visualization of density contours at y = 0 (figure 10). 
The similar effects are observed for Re = 10

4 
and Pr = 1. Although, in both cases we have the under-

resolved density field resulting in excessive numerical noise, this evidence may still indicate another 
route of instability growth than the one discussed in [1] with quasi-two-dimensional structures. 
 

 

Figure 11. The map for the most unstable perturbation wavelength in the Re–Pr space. 
 
The results can be summarized in figure 11 where the most unstable perturbation wavelength 

deduced from density snapshot visualizations and spectra peak analysis is given by symbols (each 
relates to one computation at different Re or/and Pr). One can see that the analytical expression [10]  

λ = λ' = 4πH[(2ΔρH/Δρ)(FH)
2
Re

–2
]

1/3
 

(red dashed line in figure 11) written in dimensionless form [1] at Pr = 1 with the typical density drop, 
Δρ ≈ 10

–3
ΔρH , between the layers of  heavier and lighter fluids related to earlier RTI stages is satisfied. 

For arbitrary Pr values, the updated relation,  λ = f(Pr)λ',  is next suggested according to figure 11 
where  f(Pr) → const  at  Pr → ∞  and  f(Pr1) > f(Pr2)  at  Pr1 < Pr2.  In particular, the power-law 
function,  f(Pr) ~ Pr

–1/2
,  may be valid for, at least, relatively low values between Pr ~ 1 and Pr ~ 10. 

Note that the results at Pr = 700 are heavily affected by under-resolution of the density field, even 
at lower value of Re = 200. As the result, the numerical wiggles can be seen in growing mushroom-
like structures (figures 8 and 10), and the numerical dissipation effect is a possible reason of obvious 
over-prediction of the most unstable perturbation wavelength (figure 11), as well as the SGS diffusion 
effect in the case of LES computation at Re = 4000 and Pr = 700. 

4.  Concluding remarks 
The results of scanning in the space of Reynolds and Prandtl numbers for scenarios of the transition to 
turbulence in overturning internal lee waves generated by the two-dimensional obstacle in a stably 
stratified flow have been presented. The instability and turbulence development has been studied by 
visualization of velocity and density fields, with analysis of spanwise spectra obtained from numerical 
simulation data at 10

2 
≤ Re ≤ 10

4
, 1 ≤ Pr ≤ 700. 

The range of Prandtl numbers corresponds to heat stratification in the atmosphere (Pr ~ 1), 
reservoirs (Pr ~ 7) and to salted water diffusion (Pr ~ 700), whereas the range of Reynolds numbers 
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corresponds to the one in towing-tank measurements [1–3] and concurrent simulations [6,8]. The real 
atmospheric and oceanic flows have actually much higher levels of Re ~ 10

7 
÷10

10
. Nevertheless, as 

soon as we have quite high Re values with the fully developed turbulence at late stages (as a result of 
internal lee wave breaking), the behavior of the resulting turbulent patch is essentially the same 
regardless of transition routes and Re values, due to the well-known Reynolds number independence 
principle. So both laboratory and numerical experiments [1-8], as well as the present computations at 
Re ~ 10

2 
÷10

4
 replicate well the much higher Re situations in real geophysical conditions, except for 

the instability development stage. The latter may indeed have various scenarios with different 
structures from the zoo of instabilities at different Re. Nevertheless, the map of instability growth 
scenarios proposed here gives a hint to real flows and allows us to extrapolate results to geophysical 
situations with Re ~ 10

7 
÷10

10
, in particular, for the wavelength of the most unstable perturbation of 

RTI type which is proportional to Re
–2/3

 and falls with Pr values as Pr–1/2
. 
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