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Abstract. Equilibrium problems for a 2D elastic bodies with thin Euler-Bernoulli and
Timoshenko elastic inclusions are considered. It is assumed that inclusions have a joint point,
and a junction problem for these inclusions is analyzed. Existence of solutions is proved, and
different equivalent formulations of problems are discussed. In particular, junction conditions
at the joint point are found. A delamination of the elastic inclusions is also assumed. In this
case, inequality type boundary conditions are imposed at the crack faces to prevent a mutual
penetration between crack faces. A convergence to infinity of a rigidity parameter of the elastic
inclusions is investigated. Limit problems are analyzed.

1. Setting of the problem
Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary Γ. Denote γb = (0, 1) × {0}, γt =
(1, 2) × {0}, γ = γb ∪ γt ∪ {(1, 0)} assuming γ̄ ⊂ Ω, see Figure 1 Denote by ν = (0, 1) a unit
normal vector to γ; τ = (0, 1), Ωγ = Ω \ γ̄.

The domain Ωγ represents a region with an elastic material, γb and γt are thin elastic Euler-
Bernoulli and Timoshenko inclusions, respectively, incorporated in the elastic material. This
means that a behavior of the inclusions is described by the Euler- Bernoulli and Timoshenko
equations.

Let B = {bijkl}, i, j, k, l = 1, 2, be a given elasticity tensor with the usual properties of
symmetry and positive definiteness,

bijkl = bjikl = bklij , i, j, k, l = 1, 2, bijkl ∈ L∞(Ω),

bijklξijξkl ≥ c0|ξ|2 ∀ξji = ξij , c0 = const > 0 .

Summation convention over repeated indices is used; all functions with two lower indices are
assumed to be symmetric in these indices. Let f = (f1, f2) ∈ L2(Ω)2 be a given function.

We first provide a variational formulation of the equilibrium problem for the elastic body
with thin inclusions γb, γt. A space is introduced

W = {(u, v, w, ϕ) |u ∈ H1
0 (Ω)2, (v, w) ∈ H1(γ)2, v ∈ H2(γb),

ϕ ∈ H1(γt); v = uν , w = uτ on γ; vx(1−) + ϕ(1+) = 0}

with the norm

‖(u, v, w, ϕ)‖2W = ‖u‖2H1
0 (Ω)2 + ‖(v, w)‖2H1(γ)2 + ‖v‖2H2(γb)

+ ‖ϕ‖2H1(γt)
.
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Figure 1. Elastic body with thin inclusions

Here, u = (u1, u2), uν = uν, uτ = uτ . The standard notations H1
0 (Ω), H1(γ), etc., are used

for Sobolev spaces. We identify functions defined on γ with functions of the variable x; x = x1,
hx = dh

dx , (x1, x2) ∈ Ω. For a simplicity, we write σ(u)ε(u) = σij(u)εij(u).
The identity is considered

(u, v, w, ϕ) ∈W, (1)∫
Ωγ

σ(u)ε(ū)−
∫

Ωγ

fū+

∫
γb

vxxv̄xx +

∫
γ

wxw̄x+ (2)

+

∫
γt

{(vx + ϕ)(v̄x + ϕ̄) + ϕxϕ̄x} = 0 ∀ (ū, v̄, w̄, ϕ̄) ∈W.

Theorem 1. The problem (1)-(2) has a unique solution.
We are able to provide a differential formulation of the problem (1)-(2). It is necessary to

find functions u = (u1, u2), v, w, ϕ, σ = {σij}, i, j = 1, 2, as follows

−div σ = f, σ −Bε(u) = 0 in Ωγ , (3)

vxxxx = [σν ] on γb, −wxx = [στ ] on γ, (4)

−vxx − ϕx = [σν ], −ϕxx + vx + ϕ = 0 on γt, (5)

(u, v, w, ϕ) ∈W ; vxxx = vxx = wx = 0 forx = 0, (6)

wx(1−) = wx(1+); vx + ϕ = ϕx = wx = 0 for x = 2, (7)

−vxxx(1−) = (vx + ϕ)(1+); vxx(1−) = −ϕx(1+). (8)

Here, εij(u) = 1
2(ui,j+uj,i), σν = σijνjνi, στ = σijνjτi, and [h] = h+−h− is a jump of a function

h on γ, where h± are the traces of h on the faces γ±. The signs ± correspond to positive and
negative directions of ν.

The function u = (u1, u2) describes a displacement field of the elastic body; functions w, v fit
to displacements of the inclusions γb, γt along the axis x1 and axis x2 respectively; the function
ϕ describes a rotation angle of the inclusion γt. Observe that a part of boundary conditions for
functions u, v, w, ϕ is included in the condition (u, v, w, ϕ) ∈W.

Relations (3) are the equilibrium equations for the elastic body and Hooke’s law; (4)-(5)
are the Euler-Bernoulli and Timoshenko equilibrium equations for the inclusions γb and γt.
According to the condition (u, v, w, ϕ) ∈ W, the vertical (along the axis x2) and tangential
(along the axis x1) displacements of the elastic body coincide with the inclusion displacements
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at γ. The right-hand sides [σν ], [στ ] in (4), (5) describe forces acting on γ from the surrounding
elastic media.

Theorem 2. Problem formulations (3)-(8) and (1)-(2) are equivalent provided that the
solutions are smooth.

By (8) and the first relations of (6), (7), we can write a complete system of junction conditions
at the joint point (1, 0):

w(1−) = w(1+), v(1−) = v(1+), vx(1−) = −ϕ(1+),

wx(1−) = wx(1+), −vxxx(1−) = (vx + ϕ)(1+), vxx(1−) = −ϕx(1+).

2. Delaminated elastic inclusion
Assume that the Euler-Bernoulli part γb of the inclusion γ is delaminated, please refer to Figure
1. This means that a crack is located between γb and the elastic matrix. To fix a situation,
the delamination is assumed to be at the positive side of γb. In this case, displacements v, w
of the inclusion γb should coincide with displacements of the elastic body at γ−b . In our model,
inequality type boundary conditions are considered at the crack faces to prevent a mutual
penetration between the faces.

Denote Ωb = Ω \ γ̄b and introduce a set of admissible functions

K = {(u, v, w, ϕ) | u ∈ H1
Γ(Ωb)

2, (v, w) ∈ H1(γ)2, v ∈ H2(γb),

ϕ ∈ H1(γt), u|γ− = (w, v), [uν ] ≥ 0 on γb; vx(1−) + ϕ(1+) = 0},

where H1
Γ(Ωb) = {φ ∈ H1(Ωb) | φ = 0 on Γ}. Notice that the inequality [uν ] ≥ 0 included

in the definition of K provides a mutual nonpenetration between the crack faces γ±b . An
equilibrium problem for the elastic body with the delaminated Euler-Bernoulli inclusion γb
and the Timoshenko inclusion γt can be formulated as follows. We have to find functions
u = (u1, u2), v, w, ϕ, σ = {σij}, i, j = 1, 2, as follows

−div σ = f, σ −Bε(u) = 0 in Ωγ , (9)

vxxxx = [σν ] on γb, −wxx = [στ ] on γ, (10)

−vxx − ϕx = [σν ], −ϕxx + vx + ϕ = 0 on γt, (11)

(u, v, w, ϕ) ∈ K; vxxx = vxx = wx = 0 forx = 0, (12)

wx(1−) = wx(1+); vx + ϕ = ϕx = wx = 0 for x = 2, (13)

σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [uν ] = 0 on γb, (14)

−vxxx(1−) = (vx + ϕ)(1+); vxx(1−) = −ϕx(1+). (15)

As before, a part of boundary conditions is included in the relation (u, v, w, ϕ) ∈ K .
Remark that the problem (9)-(15) admits an equivalent variational formulation. Indeed, a

solution (u, v, w, ϕ) satisfies a variational inequality∫
Ωb

σ(u)ε(ū− u)−
∫
Ωb

f(ū− u) +

∫
γb

vxx(v̄xx − vxx)+ (16)

+

∫
γt

{ϕx(ϕ̄x − ϕx) + (vx + ϕ)(v̄x + ϕ̄− vx − ϕ)}+

+

∫
γ

wx(w̄x − wx) ≥ 0 ∀ (ū, v̄, w̄, ϕ̄) ∈ K; (u, v, w, ϕ) ∈ K.
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3. Rigidity of Euler-Bernoulli beam goes to infinity
In practice, a solution of the problem (9)-(15) should depend on the rigidity parameters of the
elastic inclusions. In the model (9)-(15), these parameters were taken to be equal to 1. In this
section we introduce a rigidity parameter δ > 0 in the Euler-Bernoulli equations of the problem
(9)-(15) and analyze its passage to infinity. For a fixed parameter δ, we have to solve the
following problem: to find uδ, vδ, wδ, ϕδ, σδ = {σδij}, i, j = 1, 2, such that

−div σδ = f, σδ −Bε(uδ) = 0 in Ωγ , (17)

δvδxxxx = [σδν ] on γb, − div(aδwδx) = [σδτ ] on γ, (18)

−vδxx − ϕδx = [σδν ], −ϕδxx + vδx + ϕδ = 0 on γt, (19)

(uδ, vδ, wδ, ϕδ) ∈ K; vδxxx = vδxx = wδx = 0 forx = 0, (20)

δwδx(1−) = wδx(1+); vδx + ϕδ = ϕδx = wδx = 0 for x = 2, (21)

σδ+ν ≤ 0, σδ+τ = 0, σδ+ν [uδν ] = 0 on γb, (22)

−δvδxxx(1−) = (vδx + ϕδ)(1+); δvδxx(1−) = −ϕδx(1+). (23)

Here, aδ(x) = 1 on γt, and aδ(x) = δ on γb.
The problem (17)-(23) admits an equivalent variational formulation. A unique solution of

the variational inequality (with σ(uδ) = σδ) exists

(uδ, vδ, wδ, ϕδ) ∈ K, (24)∫
Ωb

σ(uδ)ε(ū− uδ)−
∫
Ωb

f(ū− uδ) + δ

∫
γb

vδxx(v̄xx − vδxx)+ (25)

+

∫
γt

{ϕδx(ϕ̄x − ϕδx) + (vδx + ϕδ)(v̄x + ϕ̄− vδx − ϕδ)}+

+

∫
γ

aδwδx(w̄x − wδx) ≥ 0 ∀ (ū, v̄, w̄, ϕ̄) ∈ K.

Our aim is to justify a passage to the limit as δ →∞ in the problem (24)-(25).
Introduce a set of infinitesimal rigid displacements

R(γb) = {ρ = (ρ1, ρ2) | ρ(x1, x2) = d(−x2, x1) + (d1, d2),

(x1, x2) ∈ γb}, d, d1, d2 ∈ R,

and a set of admissible functions

Kr = {(u, v, w, ϕ) | u ∈ H1
Γ(Ωb)

2, (v, w, ϕ) ∈ H1(γt)
3, [uν ] ≥ 0 on γb;

u|γt = (w, v), u|γ−b = (ρ1, ρ2) ∈ R(γb), ρ2x(1) + ϕ(1) = 0}.

It can be proved that δ → +∞,

uδ → u weakly in H1
Γ(Ωb)

2, ϕδ → ϕ weakly in H1(γt), (26)

vδ → v weakly in H1(γ), weakly in H2(γb), vxx = 0 in γb, (27)

wδ → w weakly in H1(γ), wx = 0 in γb. (28)
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Moreover,

(u, v, w, ϕ) ∈ Kr,

∫
Ωb

σ(u)ε(ū− u)−
∫
Ωb

f(ū− u)+ (29)

+

∫
γt

{ϕx(ϕ̄x − ϕx) + (vx + ϕ)(v̄x + ϕ̄− vx − ϕ)+

+wx(w̄x − wx)} ≥ 0 ∀ (ū, v̄, w̄, ϕ̄) ∈ Kr.

The problem (29) admits an equivalent differential formulation: find displacements u =
(u1, u2), v, w, a rotation angle ϕ, a stress tensor σ = {σij}, i, j = 1, 2, and ρ0 ∈ R(γb) as follows

−div σ = f, σ −Bε(u) = 0 in Ωγ , (30)

−vxx − ϕx = [σν ], −ϕxx + vx + ϕ = 0, −wxx = [στ ] on γt, (31)

u− = ρ0, σ+
ν ≤ 0, σ+

τ = 0, σ+
ν [uν ] = 0 on γb, (32)

(u, v, w, ϕ) ∈ Kr; vx + ϕ = ϕx = wx = 0 for x = 2, (33)∫
γb

[σν]ρ+ (wxρ1)(1)− (ϕxρ2x)(1)+ (34)

+((vx + ϕ)ρ2)(1) = 0 ∀ρ = (ρ1, ρ2) ∈ R(γb).

Thus, the following statement can be proved.
Theorem 3. The solutions of the problem (24)-(25) converge to the solution of (29) in the

sense (26)-(28) as δ →∞.
The model (30)-(34), or (29), describes an equilibrium state for the elastic body with the

rigid inclusion γb and elastic Timoshenko inclusion γt. The identity (34) provides equilibrium
conditions for the rigid inclusion γb, i.e. a principal vector of forces and a principal vector
of moments acting on γb are equal to zero. Indeed, denoting (σν)± by (σ1, σ2)± on γ±b , the
condition (34) can be rewritten in the following form:∫

γb

[σ1] = −wx(1),

∫
γb

[σ2] = −(vx + ϕ)(1), (35)

∫
γb

([σ2]x1 − [σ1]x2) = ϕx(1). (36)

We can also write junction conditions included in the definition of Kr:

w(1) = ρ0
1(1), v(1) = ρ0

2(1), ϕ(1) + ρ0
2x(1) = 0 (37)

and consider (35)-(37) as a complete system of junction conditions at the joint point (1, 0).
Consequently, nonlocal condition (34) can be seen as a part of junction conditions at the joint
point (1, 0).
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