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Abstract. The system of weakly coupled differential equations describing traveling waves in
dispersive media is considered. The Lyapunov — Schmidt construction is used to study the
branching of cnoidal-type periodic solutions. The analysis of bifurcation equations uses the
group symmetry and cosymmetry of original equations. Sufficient condition for existence of
the phase-shifted modes of cnoidal waves is formulated in terms of the Pontryagin’s function
determined by the nonlinear perturbation terms.

1. Introduction
We study periodic solutions for weakly coupled nonlinear differential equations describing
traveling waves in the multi-modal dispersive systems. For a coupled model, one often observes
the phase shift arising among the modes of non-perturbed systems. In this context, the
synchronization means the existence of phase-shifted solutions which can be constructed from
decoupled modes by an appropriate perturbation procedure. Using the Lyapunov — Schmidt
construction, we reduce the original problem to an equivalent implicit system of bifurcation
equations. The asymptotic analysis of these equations results in the sufficient condition of
synchronization which can be formulated via coupling nonlinear terms. In fact, this analytical
condition reduces generic problem to the search for a simple root of a special Pontryagin type
function which depends on the unknown phase shift c. We refer to the original paper [1] where
this construction was suggested by the analysis of periodic solutions of planar systems close to
the Hamiltonian ones. Bruno [2] considered the case of multiple roots of Pontryagin’s function,
and Malkin [3] extended the result known for periodic solutions of planar systems to the class of
Lyapunov systems with n degrees of freedom. Similar existence condition involving Pontryagin’s
function was obtained in [4, 5] for solitary-wave solutions of the bimodal KdV-type systems. In
present work, we use this bifurcation technique by the study of synchronized cnoidal wave
solutions.

2. Statement of the problem
Let us consider the system of ordinary differential equations

d2u

dx2
= Φu(u, v, ε),

d2v

dx2
= Φv(u, v, ε), (1)
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where u(x), v(x) are unknown scalar functions, ε is small parameter and the potential function
Φ has the form

Φ(u, v, ε) =
1

2

(
u2 + v2 − u3 − v3

)
+ εΩ(u, v, ε).

For a simplicity, the perturbation term Ω is assumed to be analytic, and the following condition
is also satisfied

Ω(0, 0, ε) = Ωu(0, 0, ε) = Ωv(0, 0, ε) = 0.

Equations (1) arise for example by describing traveling waves in the system of two weakly coupled
Korteweg — de Vries equations [5, 6]. For ε = 0, decomposed system has a solution in the form
of a cnoidal wave

u0(x) = α2 + (α3 − α2) cn
2(rx; æ), v0(x) = u0(x+ c), (2)

where the parameters r and æ are defined as

r =

√
α3 − α1

2
, æ2 =

α3 − α2

α3 − α1
,

and parameters α3 > α2 > α1 are simple roots of the cubic polynomial −u3 + u2 + 2h = 0
with given constant h. The phase shift c is arbitrary for decoupled system at leading order in ε
due to the translation invariance of the model equations. The problem is to find the values of c
providing bifurcation of the solution by the perturbation in ε. It is well-known that the function
u0 formulated above approaches to the solitary wave solution u0(x) = α1 + (α3 − α1) ch

−2(rx)
when α2 → α1. This case was studied in [4, 5].

3. Bifurcation of harmonic solutions
The problem under consideration is closely related to a problem of the perturbation of a limit
cycle to the dynamical systems

du

dx
= −Hv(u, v) + εp(u, v, ε),

dv

dx
= Hu(u, v) + εq(u, v, ε) (3)

being close to the Hamiltonian systems which were first studied in a two-dimensional case by
Pontryagin [1]. Specifically, it was proved the following

Theorem 3.1 Let C0 be a closed curve whose points satisfy the equation H(u, v) = h0 and
functions Hu and Hv are not equal to zero simultaneously. Then there exist a closed curve Ch
near C0 whose points satisfy the equation H(u, v) = h when |h− h0| is sufficiently small. Let

ψ(h) =

∫∫
D

(pεu + qεv) dudv, (4)

where D is the region inside a curve Ch. If ψ′(h0) = e 6= 0 and ψ(h0) = 0 then there exist a
unique limit cycle of (2) which depends continuosly on ε and it’s characteristic number has the
same sign as εe. Moreover Ch → C0 when ε→ 0.

At first step, we demonstrate how the theorem 3.1 can be extended to some simple class of multi-
dimensional systems of non-linear oscillators having rationally independent basic frequencies.
Let us consider the autonomous system of differential equations

dw

dx
= Aw + f(w; ε) (5)
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where w = (w1, . . . , wn) ∈ Rn is an unknown vector function with even number of components
n = 2s, and the matrix A is the block-diagonal matrix

A =


ω1J

ω2J
. . .

ωsJ

 , J =

(
0 1
−1 0

)
.

The frequencies ω1, . . . , ωs are assumed to be rationally independent, and the analytic vector
function f(w; ε) = (f1, f2, ..., fn) is assumed to satisfy the condition f(w, 0) = 0. Let us note
that the system (5) is linear at ε = 0, and it has in this case the Hamiltonian

H(w) =
1

2

s∑
j=1

ωj(w
2
2j−1 + w2

2j).

Therefore, the periodic 1-mode solution of (5) should have the form of harmonically oscillate
solution

w0(x) = %0
(
ζeiω1x + ζe−iω1x

)
(6)

as ε → 0. Here ζ = (1, i, 0, ..., 0) is the complex eigenvector of the real-valued matrix A
corresponding to its eigenvalue iω1, bar denotes complex conjugate and the real-valued amplitude
parameter %0 depends on the constant level H(w0) = h0. Now we seek the solution w of a
nonlinear system (5) to be periodic in x with an unknown period T (ε) = 2π/ω(ε) where the
frequency ω(ε) is analytic in ε and ω(0) = ω1. Changing independent variable x = ω(ε)τ , we
consider an unknown solution in the form

w(τ ; ε, ω, %0) = w0(τ ; %0) + εθ(τ ; ε, ω, %0).

By that way, the problem reduces to the finding 2π-periodic solution θ of equivalent operator
equation

Aθ = R(θ;ω, ε) (7)

where A is the linear differential operator acting by the formula

Aθ =
dθ

dτ
− Cθ, C = ω−11 A, (8)

and nonlinear mapping R is defined as follows:

R(θ; ε, ω) =
1

εω1

{
(ω1 − ω)

dw0

dτ
+ ε(ω1 − ω)

dθ

dτ
+ f(w0 + εθ; ε)

}
. (9)

Let E and F be a Banach spaces of 2π-periodic real-valued functions θ(τ) being smooth and
continuous respectively, which can be presented by a uniformly convergent Fourier series

θ(τ) =

+∞∑
m=−∞

θ(m)eimτ , θ(m) ∈ Cn : θ(−m) = θ̄(m)

having finite norms

‖θ‖E =
∞∑

m=−∞
(1 + |m|)|θ(m)|, ‖θ‖F =

∞∑
m=−∞

|θ(m)|.
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Lemma 3.2 Let the frequencies ω1, ..., ωs satisfy the inequalities
∣∣ω−11 ωj

∣∣ < 2 (j = 2, . . . , s).
Then the non-homogeneous equation Aw = g with a given vector function g(τ) ∈ F has a
2π-periodic solution w(τ) ∈ E if and only if the function g satisfies the orthogonality condition

(g, ζeiτ )
def
=

2π∫
0

g(τ) · ζ eiτ dτ = 0 (10)

where ζ is the complex eigenvector from (6) and the symbol · denotes Hermitian scalar product.

This lemma imply that operator A : E → F is the Fredholm operator. It has a two-
dimensional null-space KerA generated by harmonic solutions of the form (6), so the Banach
spaces E and F split into the direct sums E = KerA ⊕ X, F = Y ⊕ ImA where X ⊂ E is
closed infinite-dimensional subspace of E, and Y is the two-dimensional subspace of F . Thus,
according to the Lyapunov — Schmidt construction [7]–[9], we can search for the small solution
of the equation (7) in the form

θ = ξϕ+ ξϕ+ σ, ξ ∈ C, ϕ(τ) = ζeiτ , σ ∈ X.

By that, the operator equation (7) reduces to equivalent bifurcation equation

QR(ξϕ+ ξ ϕ+ σ(τ ; ξ, ξ, ε, ω); ε, ω) = 0 (11)

where Q : F → Y is the projection associated with the orthogonality condition (10), and the
nonlinear mapping σ = σ(τ ; ξ, ξ, ε, ω) is specified by implicit equation

σ = Ã−1(I −Q)R(ξϕ+ ξ ϕ+ σ; ε, ω) (12)

where the isomorphism Ã : X → ImA is generated by the restriction of the operator A. The
system (11) at leading-order ε = 0 results in the pair of independent scalar relations

%0 ω
′(0) + Γ(%0) = 0, Ψ(%0) = 0 (13)

with smooth functions Γ and Ψ. More precisely, the function Ψ has the form

Ψ(%0) =

2π∫
0

{
cos τ

∂f1
∂ε

(w0; 0)− sin τ
∂f2
∂ε

(w0; 0)

}
dτ (14)

with the components f1, f2 of the perturbation term f from (5), this is analog of the Pontryagin’s
function (4) for the ODE system (5). Let us remark that nonlinear bifurcation equation (11)
is completely degenerated as far as a direct application of the implicit function theorem is
concerned. However, the presence of group symmetry allows to reduce the number of parameters.
Specifically, the kernel of the linear operator A is invariant with respect to the representation
Tγ of the translation group τ 7→ τ + γ. This representation acts on the null space KerA in
accordance with the formula Tγ ϕ(τ) = eiγ ϕ(τ). Therefore, Tγ induces the representation of a
compact group SO(2) acting in a complex parametric plane ξ ∈ C by the formula Sγ ξ = eiγξ.
Thus, we can use the reduction theorem which was proved in [10]. According to this theorem,
all solutions of the equations (11) can be presented at ε = 0 in the form

θ0 = Tγ

{
|ξ|(ϕ+ ϕ) + Ã−1(R0)

}
(15)
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with appropriate γ ∈ [0, 2π]. Thus, we can fix here the phase shift by choosing γ = 0 without
loss of generality. In this case, the system (11) simplifies to the system{ |ξ|Ψ ′(%0) + Π1(ω

′(0), %0) + εχ1(|ξ|; ε, %0, ω) = 0

|ξ|Π2(%0, ω
′(0))− %0ω ′′(0) + Π3(ω

′(0), %0) + εχ2(|ξ|; ε, %0, ω) = 0
(16)

where explicit form of smooth functions Πj (j = 1, 2, 3) and χj (j = 1, 2) is not essential for
analysis. Note that the parameters %0 and ω ′(0) have already known from the leading-order
equations (13). Thus, if the condition Ψ ′(%0) 6= 0 holds and the parameter ε is sufficiently small
then we can apply the implicit function theorem in order to determine the magnitude |ξ| and
the parameter ω ′′(0) from the equations (16). Finally, we obtain the following result.

Theorem 3.3 If %0 is a simple root of the function Ψ from (14) and ε is sufficiently small, then
there exists 2π/ω(ε)-periodic solution to (5) of the form w = w0 + εθ such that ω(ε) → ω1 as
ε→ 0.

4. Bifurcation of cnoidal wave solutions
Let us return to the original system (1). Similarly, we can seek the periodic solution

u(x;ω, c, ε) = u0(x) + ε u1(x;ω, c, ε), v(x;ω, c, ε) = u0(x+ c) + ε v1(x;ω, c, ε) (17)

having unknown period T (ε) = 2K(æ)/rω(ε) such that ω(0) = 1 where u0 is the cnoidal-wave
solution (2) and K(æ) is the complete elliptic integral of the first kind. In the same way, this
problem can be reduced by changing independent variable x = ω(ε)τ to the problem of finding
2K/r-periodic solution w = (u1, v1) to the equivalent operator equation

Aw = R(w;ω, ε) (18)

which has the linear part

Aw =
(
u1
′′ + (3u0 − 1)u1, v1

′′ + (3v0 − 1)v1

)
.

Accordingly, the nonlinear operator R(w;ω, ε) = (f1(u1, v1;ω, ε), f2(u1, v1;ω, ε)) has the
components

f1 = ε−1(1− ω2)(u′′0 + εu′′1)− 3

2
εu21 + Ωu(u0 + εu1, v0 + εv1, ε)

f2 = ε−1 (1− ω2)(v′′0 + εv′′1)− 3

2
εv21 + Ωv(u0 + εu1, v0 + εv1, ε).

(19)

Let k ≥ 1 be an integer. Denote by Hk
2K/r the class of 2K/r-periodic function which belongs to

the Sobolev space W k
2 [0, 2K/r]. Let us consider the linear differential equation

u′′ +
(
3u0(τ + c)− 1

)
u = f(τ) (20)

with 2K/r-periodic function f . Let Gc be the linear integral operator which is defined by
following formula

(Gcf)(τ) = −u′0(τ + c)

τ+c∫
0

u∗(s)f(s− c) ds− u∗(τ + c)

2K/r∫
τ+c

u′0(s)f(s− c) ds−

− r

4KL
u∗(τ + c)

0∫
−2K/r

u∗(s)f(s− c) ds,

(21)
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where u∗ is a non-periodic solution of homogeneous equation (20) with c = 0 which is given by
the Liouville’s formula

u∗(τ) = u′0(τ)

τ∫
0

ds

u′20 (s)

and the constant L is defined via complete elliptic integrals [11].

Lemma 4.1 Let f ∈ Hk
2K/r and following condition holds

2K/r∫
0

f(τ)u′0(τ + c) dτ = 0. (22)

Then Gcf ∈ Hk+2
2K/r and inequality ‖Gcf‖Hk+2

2K/r
≤ C‖f‖Hk

2K/r
is valid.

According to this lemma the general solution of nonhomogeneous equation (20) is of the form

u(τ) = ξu′0(τ + c) +Gcf(τ), ξ ∈ R.

Let us return to the equation (18). The linear operator A : Hk+2
2K/r ×H

k+2
2K/r → Hk

2K/r ×H
k
2K/r

is Fredholm and it has a two-dimensional kernel with the basis e1 = (u′0, 0), e2 = (0, v′0). The
solvability conditions of nonhomogeneous equation Aw = (f1, f2) reduces to that of two scalar
equations of the form (20). It is important to note that the kernel invariance of linearized
operator is cruicial to the reduction of bifurcation equation for the system (5) considered above
in the Section 3. In contrast, this property is not held for the original ODE system (1) even
this system is also autonomuos. However, the group symmetry also plays a key role while the
system (1) possesses the potential

l(w; ε) =

T (ε)∫
0

{1

2
u′2(x) +

1

2
v′2(x) + Φ(u(x), v(x), ε)

}
dx

which is invariant with respect to the translation group Tγw = w(x + γ) where w = (u, v). In
this case, the following relation holds

〈
∇wl(w, ε), Xw

〉
= 0 where X = ∂x is the infinitesimal

operator of the translation group, and 〈·, ·〉 denotes a scalar product in L2[0, T (ε)]×L2[0, T (ε)].
The operator X here is the cosymmetry operator for the system (1) in the sense of the
paper [12]. More generally [4], if a potential operator has the invariant Lagrangian under action
of the Lie group, then cosymmetry is given by the Lie algebra of infinitesimal generators of
the symmetry group factorized with respect to the isotropy subgroup of unperturbed solution
(u0, v0). Yudovich [12, 13] explained by the presence of cosymmetry the branching of solution
families near the known non-cosymmetric solution w0 (Xw0 6= 0). Therefore, the reduction
theorem proved in [4] reduces a two-dimensional system of bifurcation equations for the system
(1) to single scalar equation having the form

2K/r∫
0

{
ε−1(1− ω2)(u′′0 + εu′′1)− 3

2
εu21 + Ωu(u0 + εu1, v0 + εv1, ε)

}
u′0(τ)dτ = 0. (23)

Here the implicit mapping (ξ1, ξ2; c, ω) → (u1, v1) is specified at leading order ε = 0 by the
formulae

u1 = ξ1u
′
0 +G0f

0
1 , v1 = ξ2v

′
0 +Gcf

0
2 (24)
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where the operator Gc acts by the formula (21), and the functions f01 , f02 are defined by the
formula (19) taken at the limit ε = 0. Taking into account these notations, we obtain the limit
form of the equation (23) at ε = 0 which involves the Pontryagin’s function as follows:

Ψ̃(c)
def
=

2K/r∫
0

Ωu(u0(τ), u0(τ + c), 0)u′0(τ)dτ = 0.

Using this fact and substituting explicit formulae (24) into equation (23) we arrive at the final
form of the bifurcation equation

Ψ̃′(c)(ξ1 − ξ2) + ν(c) + εΘ(ξ1, ξ2;ω, c, ε) = 0, (25)

where explicit form of smooth functions ν and Θ is not essential for analysis. It is clear that
equation (25) uniquely determines the parameter ξ2 by the implicit function theorem when the

condition Ψ̃′(c) 6= 0 holds. Let us remark that the similar sufficient condition was obtained
in [4, 5] in the limit case of solitary-wave solutions. In addition, it turns out that the stability
of these solutions considered in the context of the time evolution model can be also checked in
terms of the Pontryagin’s function. Specifically, the stability of the bifurcate solution depends
on a sign of Ψ̃′(c) in accordance with [5].
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