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Abstract. A shear flow of a viscosity-stratified fluid in a Hele-Shaw cell is considered. The
long-wave approximation is applied to the governing equations. To describe the evolution of
the mixing layer, a special flow with a three-layered structure is considered. A one-dimensional
model is derived by averaging the motion equations over the cell width, taking into account
the flow structure. For a stationary flow, solutions of motion equations are constructed. The
influence of viscosity on the mixing layer evolution is investigated by performing a numerical
experiment for a flow with different viscosities in the layers and for a flow with always zero
viscosity. It is shown that viscosity has a significant influence on the flow evolution.

1. Introduction
The process of interaction of two fluids with different viscosities often appears to be unstable
and leads to formation of different structures. In the case of a more viscous fluid displacing
a less viscous one, a so-called viscous fingering occurs [1]. The classical mathematical model
which describes evolution of the Saffman-Taylor instability in the Hele-Shaw cell is described in
the papers [2, 3]. However, the need to incorporate inertial forces leads to development of more
complex non-linear models [4], which makes it possible to consider flows with different velocities
in the layers, when describing the formation and evolution of instabilities. In its turn, in shear
flows the evolution of instabilities results in formation of such structures as mixing layers. The
instabilities occur either on the interface between the fluids or on the free surface, which is then
known as a turbulent bore. The relation of the vertical to horizontal characteristic flow size is
usually small for those flows, which makes it possible to describe the instability evolution in the
framework of a two-dimensional shallow water model, and additionally to consider mixing effects
between the layers [5, 6]. In [7] a model describing the horizontal-shear flow was proposed, which
allowed to generalize the concept of subcritical and supercritical flow. Further development of
this model resulted in a method, which also takes into account the turbulent mixing effect and
the mass transfer between the layers and is based on the multi-layered fluid theory. This method
was successfully applied in works [8, 9] for describing evolution of a subsurface turbulent layer
in plane-parallel flows. Using this method one can determine the size of the mixing area staying
in the framework of a one-dimensional model, which simplifies the initially two-dimensional
calculations drastically. The aim of this work is to derive equations for a three-layered shear flow
in the Hele-Shaw cell under the assumption that the viscosity varies in the flow and to study the
evolution of the mixing layer. The work is based on a model of a flow averaged through the gap
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with quadratic velocity and in the framework of the shallow water theory [9, 10]. The stationary
solutions of the governing equations are sought and analyzed. It is shown that viscosity has a
significant influence on the flow evolution.

2. Mathematical model
Gap-averaged shear flows of a weakly-compressible fluid in the Hele-shaw cell are described by
the following system of equations [9, 10]:

ρt + (uρ)x + (vρ)y = 0,

(ρu)t + (βρu2 + p)x + (βρuv)y = −µu,

(ρv)t + (βρuv)x + (βρv2 + p)y = −µv,

(cρ)t + (ucρ)x + (vcρ)y = 0.

(1)

Here ρ(t, x, y) is the density, u(t, x, y) and v(t, x, y) are the horizontal velocity vector
components, p = p(t, x, y) is the pressure and c = c(t, x, y) is the concentration, which is scaled
such that if the flow divides into two layers with different properties, it is equal to unity in one
of the fluid layers and zero in the other layer. The constant β comes from integration over the
cell gap, and in general β = 6/5, but since it has a negligibly small effect on the flow evolution
[4], in this work β = 1 is considered. The spatial configuration of the flow is shown in Figure 1.
The cell gap, which stretches over the z-axis is considered to be small relative to the horizontal
cell sizes. Motions of the fluid along the z-axis are restrained by solid plates.

Figure 1. The spatial configuration of the flow

To perform the long-wave approximation in the motion equations (1), one has to assume that
the flow is essentially parallel and apply the scaling

t→ ε−1t, x→ ε−1x, v → εv, µ→ εµ

and then, discard the terms of power two (ε2) for being negligibly small, where ε = Ly/Lx � 1
is the relation of characteristic size of the cell over the y-axis to the characteristic size over the
x-axis. As a result, the following system of equations is derived:

ut + uux + vuy + aρx = −µu/ρ, ρy = 0,

ct + ucx + vcy = 0, ρt + (uρ)x + (vρ)y = 0.
(2)

Moreover, a closing relation for the pressure is used to obtain the system (2). Namely,
p(ρ) = aρ2/2, where a2 = c20/ρ0, and the constants c0 and ρ0 determine the characteristic
sound speed and density of the fluid.
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In this work a flow between two solid plates parallel to the x-axis is considered. The plates
are located on the levels y = 0 and y = H, and therefore the following additional impermeability
conditions can be written:

v
∣∣
y=0

= v
∣∣
y=H

= 0.

In case when µ = 0, a similar approach leads to the classical long-wave theory equations for
an ideal fluid [12], if one excludes from consideration the equation for the concentration c(t, x, y).

Furthermore, from the system (2), the conservation laws of momentum ρu and energy
E = (u2 + aρ)ρ/2 can be derived:

(ρu)t + (ρu2 + aρ2/2)x + (ρuv)y = −µu,

Et + ((E + aρ2/2)u)x + ((E + aρ2/2)v)y = −µu2.
(3)

3. Multi-layered model
Hereinafter the problem is considered in the framework of a special flow structure [8]. Let the
fluid flow into the cell from the left side. The shear flow consists of two layers with different
viscosities and velocities. Then at some point in space (which will be further considered to be
position x = 0) a mixing layer starts to develop, as shown in Figure 2.

Figure 2. A three-layered flow in the Hele-Shaw cell

Hereinafter the index “1” corresponds to the lower flow layer, the index “2” corresponds to
the mixing layer and the index “3” corresponds to the upper layer. The width of the i-th layer
is ξi, velocity is ui, and a constant viscosity µi is also given. The flow in the upper and lower
layers is considered to be of the special class uy = 0. Then the momentum equation in this
layers can be written as:

u1t + u1u1x + aρx = −µ1u1/ρ,

u3t + u3u3x + aρx = −µ3u3/ρ.

Further on, the last equation of (2) and the equations (3) are averaged over the cell width
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y ∈ [0, H]:

(ξ1ρ)t + (u1ξ1ρ)x = −σqρ, (ξ2ρ)t + (u2ξ2ρ)x = 2σqρ, (ξ3ρ)t + (u3ξ3ρ)x = −σqρ,

Qt + ((u22 + q2)ξ2ρ+ u21ξ1ρ+ u23ξ3ρ+ aHρ2/2)x = −µ1ξ1u1 − µ2ξ2u2 − µ3ξ3u3,

((u21ξ1 + (u22 + q2)ξ2 + u23ξ3)ρ+ aHρ2)t + ((u31ξ1 + (u22 + 3q2)u2ξ2 + u33ξ3 + 2aQ)ρ)x =

= −2(µ1ξ1u
2
1 + µ2ξ2(u

2
2 + q2) + µ3ξ3u

2
3)− θρq3.

Here, the velocities in the mixing layer are described with the following quantities

u2 =
1

ξ2

H−ξ3∫
ξ1

u dy, q2 =
1

ξ2

H−ξ3∫
ξ1

(u− u2)2 dy,

where the total flow rate is Q = ρ(u1ξ1 + u2ξ2 + u3ξ3), and the empirical constants σ, θ define
the mass transfer and the energy dissipation in the flow, respectively. From these averaged
equations, one can derive, as consequence, the following one-dimensional model of the flow:

(ξ1ρ)t + (u1ξ1ρ)x = −σqρ, (ξ2ρ)t + (u2ξ2ρ)x = 2σqρ, (ξ3ρ)t + (u3ξ3ρ)x = −σqρ,

u1t + u1u1x + aρx = −µ1u1
ρ

, u3t + u3u3x + aρx = −µ3u3
ρ

,

u2t + u2u2x +
(q2ξ2ρ)x
ξ2ρ

+ aρx = −µ2u2
ρ

+
σq

ξ2

(
u1 − 2u2 + u3

)
,

qt + (u2q)x = −µ2q
ρ

+
σ

2ξ2

(
(u1 − u2)2 + (u3 − u2)2 − (2 +

θ

σ
)q2
)
.

(4)

In the process of flow evolution, the width of the upper or lower layer (for example, “3”)
can eventually become equal to zero. In this case, the flow becomes two-layered, and a similar
approach leads to the model of a two-layered flow:

(ξ1ρ)t + (u1ξ1ρ)x = −σqρ, (ξ2ρ)t + (u2ξ2ρ)x = σqρ,

u1t + u1u1x + aρx = −µ1u1
ρ

,

u2t + u2u2x +
(q2ξ2ρ)x
ξ2ρ

+ aρx = −µ2u2
ρ

+
σq

ξ2
(u1 − u2),

qt + (u2q)x = −µ2q
ρ

+
σ

2ξ2

(
(u1 − u2)2 − (1 +

θ

σ
)q2
)
.

(5)

When both the upper and the lower layers vanish (their width becomes equal to zero), the
model (4) is rewritten in a form which is close to equations describing the plane-parallel flows
[13]:

ρt + (u2ρ)x = 0, (u2ρ)t + ((u22 + q2)ρ+ aρ2/2)x = −µu2,

((u22 + q2)ρ+ aρ2)t + ((u22 + 3q2)u2ρ+ 2au2ρ
2)x = −2µ2(u

2
2 + q2)− θhq3.

(6)

For the sake of brevity, the characteristics of the two-layered model (5) are sought. The
characteristics of the three- and one-layered models can be found using a similar approach. To
do this, the model (5) is rewritten in the matrix form

Ut + AUx = F,
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where U = (ρ, ξ2, u1, u2, q)T is a vector of the unknown quantities,

F =

(
0, σq,−µ1u1

ρ
,−µ2u2

ρ
+
σq

ξ2
(u1 − u2),−

µ2q

ρ
+

σ

2ξ2

(
(u1 − u2)2 − (1 +

θ

σ
)q2
))T

is the right part of the equation, and the matrix A ca be written as follows:

A =


(ξ1u1 + ξ2u2)/H ρ(u2 − u1)/H ξ1ρ/H ξ2ρ/H 0
ξ1ξ2(u2 − u1)/(Hρ) (ξ1u2 + ξ2u1)/H −ξ1ξ2/H ξ1ξ2/H 0

a 0 u1 0 0
a+ q2/ρ q2/ξ2 0 u2 2q

0 0 0 q u2

 .

The eigenvalues of the matrix A are sought from the characteristic equation:

det(A− λE) = (u2 − λ)((u2 − λ)2 − 3q2)

(
(u1 − λ)2 − aξ1ρ

H

)
− aξ2ρ

H
(u1 − λ)2 = 0.

It is obvious that this equation has a root λ = u2 which corresponds to the characteristic
dx/dt = u2. It is also clearly seen then when the flow is close to the one-layered case, all other
characteristics also become real.

4. Stationary solutions
Traveling waves can be investigated in a coordinate system moving with the same speed as the
waves do. Therefore, to describe the mixing layer structure, stationary flow should be considered.
Then the system (4) is rewritten as:

(u1ξ1ρ)x = −σqρ, (u2ξ2ρ)x = 2σqρ, (u3ξ3ρ)x = −σqρ,

u1u1x + aρx = −µ1u1
ρ

, u3u3x + aρx = −µ3u3
ρ

,

u2u2x +
(q2ξ2ρ)x
ξ2ρ

+ aρx = −µ2u2
ρ

+
σq

ξ2

(
u1 − 2u2 + u3

)
,

(u2q)x = −µ2q
ρ

+
σ

2ξ2

(
(u1 − u2)2 + (u3 − u2)2 − (2 +

θ

σ
)q2
)
,

(7)

and can be solved with respect to the derivative terms, which yields a system of ODEs:

ρ′ =
G

∆
, u′1 = −µ1

ρ
− a

u1
ρ′, u′3 = −µ3

ρ
− a

u3
ρ′,

ξ′1 = −σq
u1
− ξ1
u1
u′1 −

ξ1
ρ
ρ′, ξ3x = −σq

u3
− ξ3
u3
u′3 −

ξ3
ρ
ρ′,

u′2 =
2σq

ξ2
− u2
ξ2ρ

(
ξ2ρ
′ − ρξ′1 − ρξ′3

)
, ξ′2 =

2σq

u2
− ξ2
u2
u′2 −

ξ2
ρ
ρ′,

q′ = −µ2q
ρu2
− q

u2
u′2 +

σ

2ξ2u2

(
(u1 − u2)2 + (u3 − u2)2 − (2 +

θ

σ
)q2
)
,

(8)

where

G =
µ2ξ2(u

2
2 − 2q2)

u2(u22 − 3q2)
+
µ1ξ1
u1

+
µ3ξ3
u3
− σqρ

u1
− σqρ

u3
+

+
σqρ((u1 − u2)2 + (u3 − u2)2 + u2(u1 − 4u2 + u3)− (6 + θ

σ )q2)

u2(u22 − 3q2)
,

∆ = H − aξ1ρ

u21
− aξ3ρ

u23
− aξ2ρ

u22 − 3q2
.
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The sign of the discriminant ∆ indicates the flow type: subcritical when ∆ < 0, and supercritical
when ∆ > 0.

The two- and singe-layered models (5) and (6) can also be rewritten in the form of systems
of ODEs.

To calculate the initial values of the velocities, it is assumed that ξ2|x=0 → 0, and that the
limits of u2 and q exist. Then from the equations (7), the following relations can be derived:

q20 =
1

2
u10u20 − u220 +

1

2
u20u30

u20 =
(6 + θ/σ)(u10 + u30)

4(4 + θ/σ)

(
1±

√
1− 16

(4 + θ/σ)(u210 + u230)

(6 + θ/σ)2(u10 + u30)2

)
,

(9)

where the index “0” denotes the values of the functions at x = 0. That root, which provides the
relation u10 ≤ u20 ≤ u30, is considered for the value u20. This is necessary for the problem to
be physically reasonable.

5. Numerical results
To investigate the viscous terms effects on the mixing layer evolution, a stationary flow model
(8) is considered. This model can reduce to its two- or singe-layered version in the process of
flow evolution.

The numerical experiment is performed by using a simple Euler method on a mesh with
resolution N = 5000. The computational domain is x ∈ [0, 12], the width of the cell h = 1,
viscosity in the mixing layer is given by the formula µ2 =

√
µ1µ3. The initial conditions are:

u1 = 0.3, u3 = 0.75, ξ1 = 0.599, ξ3 = 0.399, θ = 0.6, a = 1500, the initial velocities u2 and q are
given by the formula (9). The parameter θ = 0.6, and the parameter σ varies from 0.15 to 0.2.

Figure 3. The mixing layer for the
subcritical flow with viscosity (solid) and
without viscosity (dotted)

Figure 4. The mixing layer for the
supercritical flow with viscosity (solid) and
without viscosity (dotted)

The calculations for the subcritical flow are shown in Figure 3, and for the supercritical
flow in Figure 4. The dotted lines show the modeling in assumption of a fluid with viscosity
µ1 = µ3 = 0 and the solid lines show the modeling of a flow with different viscosities in the
layers µ1 = 0.5 and µ3 = 0.2 The figures in both subcritical and supercritical case show that
the viscous terms significantly slow the process of evolution of the mixing layer.

Nonlinear Waves: Theory and New Applications (Wave16) IOP Publishing
Journal of Physics: Conference Series 722 (2016) 012020 doi:10.1088/1742-6596/722/1/012020

6



6. Conclusion
In the current work, a one-dimensional three-layered model of a shear flow in the Hele-Shaw
cell is derived in the terms of long-wave approximation. Different viscosities of the fluid in the
layers are assumed. A solution for the stationary flow was proposed and a numerical modeling
was performed. The numerical results indicate that viscosity slows the process of evolution of
the mixing layer significantly. Further work will be devoted to comparing the numerical results
to the non-stationary flow solution and to the two-dimensional modeling of equations (1).
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