Nonlinear Waves: Theory and New Applications (Wavel6) IOP Publishing
Journal of Physics: Conference Series 722 (2016) 012010 doi:10.1088/1742-6596/722/1/012010

Gaseous bubble oscillations in anisotropic
non-Newtonian fluids under influence of
high-frequency acoustic field

R N Golykh

Chair of Measurement and Automation Methods and Tools, Biysk Technological Institute of
FSBEI “Altai State Technical University named after I.I. Polzunov”, Biysk city, Russia

E-mail: romangl90@gmail.com

Abstract. Progress of technology and medicine dictates the ever-increasing requirements
(heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-
Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid
crystals, etc.). Materials with improved properties obtaining is possible by modification of
their physicochemical structure. One of the most promising approaches to the restructuring
of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The
efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble.
Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape
remains spherical, is most full investigated, because the problem reduces to ordinary differential
equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are
most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from
spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper
presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian
fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The
equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating
bubble size and shape evolution depending on rheological properties of liquid and acoustic field
characteristics.

1. Introduction

In recent decades, non-Newtonian fluids are more and more widely used in various areas of
human activity. Examples are epoxy resins which are the basis for the preparation of polymeric
composite materials. It is well known that medical implants based on such materials are rarely
rejected by the body (in comparison with metal-based implants) and tissue irritation on the
contact surface with such implants is minimized. Composite materials in aircraft structures
make it possible to combine ease of the aircraft with its resistance to extreme mechanical loads
as opposed to metal. Along with polymers, other examples of non-Newtonian fluids used in
modern technology are coating materials, liquid crystals, etc. Today, progress of technology
and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance,
strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced
on their basis. Obviously, materials with improved properties are possible to obtain by
modification of its physicochemical structure.
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A number of researchers found that one of the most promising approaches to the restructuring
non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations [1]. It allows
to concentrate the low density energy (primary influence) in high density energy in the form of
shock waves with the amplitude of pressure up to 100 MPa at bubble collapse and increasing the
local temperature to 5000 K in cavitation nuclei. For example, this leads to the dispersion of the
filler particles mixed in fluid into smaller ones [2], to reduce the viscosity of the liquid base due
to breakdown of molecular bonds, etc. [3] Furthermore, associated effects that are stationary
swirls acoustic flows and Eckart flows provide additional medium mixing that ensures uniform
treatment.

The degree of appearence of each of the presented physical effects is primarily determined by
the dynamics of the cavitation bubble or by the change of its size and shape under an external
field influence (in particular, under high-frequency acoustic or ultrasonic field). Thus, the task
of investigating the dynamics of a gas bubble in a non-Newtonian fluid is important.

2. Mathematical problem statement

Due to difficulties of experimental observation of bubble dynamics in non-Newtonian fluids
caused by high speed of process, the most appropriate study method is mathematical modeling.
The main mathematical difficulties of investigation of bubble dynamics in non-Newtonian fluid
are caused by viscosity depending on absolute value and direction of shear rate. Today for the
particular case of isotropic non-Newtonian fluids that have viscosity depending only on shear
rate Euclidean norm and not depending on shear rate direction, some authors [4, 5, 6, 7] obtained
ordinary differential equations for the spherical bubble radius as a function of time. However,
for an anisotropic non-Newtonian fluid, whose viscosity depends not only on the module, but
also on the shear direction, the problem cannot be reduced to the same ordinary differential
equation, because gaseous bubble in anisotropic fluids deviates from spherical shape (Figure 1).

Figure 1. Schematic diagram
of deformed bubble in anisotropic
— — — — — fluid.

Therefore, to solve this problem, a consideration of the general equations of non-Newtonian
anisotropic medium flow (1-3) was made based on rheological model presented by V.S. Volkov
[8]. These equations together with the speed and pressure of the fluid include the unit vector
orientation B of the macromolecules, which actually determines the viscosity dependence on
shear rate direction. Due to small bubble sizes compared with acoustic wave length, fluid can
be assumed incompressible.

div v = 0; (1)
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where v is the velocity of fluid, m/s; p is the pressure in fluid; T is the tensor of viscosity stresses
in fluid generally depending on deformation rate tensor D (s™!), vector of macromolecules
orientation B (non-dimensional) and time ¢ (s), A is the non-dimensional “tumbling” parameter
8].

It is assumed, that at the initial time the vector of macromolecules orientation is uniform in
area of fluid and equals to By (see Figure 1), which is collinear to x3 axis and has unit norm
|Bo| = 1. It is easy to check, that unit norm of B always remains

dB}? dB\ 2 _
i _2<B, dt>_)\ ZDZSBB ZB Z DypnBm By | = (4)

m, n=1

= ZDHBB— Z Dy BB | = 0;

i, s=1 m, n=1

These equations are supported by boundary conditions on bubble wall

dr
V= %7 (5)
Tn=(p—pp+20K)n; (6)
and infinity
v =0; (7)
p = pst + pasin (wit); (8)

where r is the radius vector of bubble wall point, m; n is the normal vector to bubble wall; K
is the curvature of bubble wall, m~!; o is the surface tension of liquid, N/m; pg is the static
pressure, Pa; p4 is the amplitude of acoustic pressure, Pa; pp is the gaseous pressure in bubble
interior, Pa; w is the angular frequency of acoustic oscillations, s~!.

Tensor of viscosity stresses in anisotropic non-Newtonian fluid is defined as follows:

3 3
Z Z ngkl + TZ] Z Z 772jk:l ( + ) (9)
k=111 k=111 Oz Oz,

The 4th range tensors of viscosity 7;j1; and relaxation time 75 included in equation (9)
satisfy the conditions of symmetry:

Nijkl = Mjikl = Nijlk = Mklijs Tijkl = Tjikl = Tijlk = Tklij- (10)
Depending on subclass of anisotropic non-Newtonian fluid, the viscosity and relaxation time
tensors yet satisfy some conditions:

e viscoelastic anisotropic fluids (n;i (D) = const);

e nonlinear viscous anisotropic fluids (7 = 0).

Finite element solution of these systems of equations consumes many computing time,
especially when it comes to finding the evolution of the position of the free boundary. Therefore,
the author has proposed a method of solution based on asymptotical decompositions of flow
parameters into a series with powers of Reynolds and Eulerian numbers.

The method is described in the next section.
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3. Method for solution

For solution of anisotropic non-Newtonian fluid flow equations, firstly the viscosity and
relaxation time tensors are decomposed into spectrum (11) that defines viscosity depending
on macromolecules orientation vector [8]

Nijkl = Z 7704 Ukla Tijkl = Z Tal ’L]k‘l (11)

1 51]95 je + 51'@(5 ik 5@ '5ke 2 3 2 3 1 1
az(jl)cl = ’ 9 - ]3 - az(jlz:l - az(jlz;l; agjl)cl D) (Nij - 35ij> (Nkl - 35kl>

ag’;l (5 N]e + Nzkéje + 6JéNJk + Nze(sﬁf)

where N;; = B;Bj is the structural tensor, determined by vector of macromolecules orientation
B; 6% = 0;7 — IV;j is the transverse Kronecker symbol which makes a projection on the direction
orthogonal to the unit vector B.

In expression for agjl-,)d, the term 0;;0e/3 can be excluded due to fluid incompressibility.
The spectral decomposition follows that viscosity of fluid is determined by four parameters (we
assume that fluid has uniaxial anisotropy [8]) n. =m =02, 9 =03, 7L =71 = T2, | = T3.

Using the viscosity tensor representation, we define Reynolds and Eulerian number as

[ 2
Re = pwR2, | —— 12
0 773_ "‘Wﬁ ( )

paA
Eu=-——F—+ 13
(prR%) (13)

where Ry is an equilibrium radius of bubble, m.

According to the offered method for calculation of bubble shape, the parameters of the flow
are decomposed into a series of power of Reynolds and Eulerian numbers. Herewith, the tensor
of viscous stresses is represented as

L& dT ov, | 0
S g, - LSS g (G + o). (14)

k=1 1=1 k=11=1 Oy,

And the decompositions into the series are

VEX R s DB v =0 (15
i > Pn _ - m .
b = Re’ Pn = mX::l Eu" ppm; (16)
B(™ e
BBy o = 3 B (At + o) 7
S ) o
T (m) _ mep(nm).
T_;Re"’ T _m;Eu T, (18)
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where n| = Bo, n; = (v1e; + z2e2) / (CL’% —|—$%), Anm and pnm, are the coefficients satisfying
norm conditions
N M 2 N M 2
VN e NU{0},VM €N <Z > )\nm> + (Z > unm> =1 (19)
n=0m=1 n=0m=1
The convergence of the series is guaranteed at Re > 3 and Eu > 1, that is at high frequency
acoustic field.
At Re — oo the equations (1, 2) reduce to the equations of flow of ideal isotropic fluid

div vo = 0; (20)
0vo
( o (vo, V) Vo) =—-V0no (21)
with spherical symmetric solution
ORy r
2
22
Vo = 8t 7”37 ( )

pB — 20K — pg — pasin (wt)

Do = Pst + pasin (wt) + Ry ; (23)

|
Using the power series, the fluid flow around the bubble is calculated by following algorithm.
(i) Choose N and M which are maximum of Re and Eu powers in series respectively.

(ii) To calculate the pg, v in spherical symmetry representation (22, 23) and B©) through v
by equation (3).

For (n,m)
(iii) To solve Poisson equation

n m—1
Appm = div div T nm) — pdiv (Z th (nk)(ml)) ; (24)
k=0 =1
(iv) To calculate viscosity tensor
T(nm) = T(nm) [V(]7 Vi, -5 Vn—-1,Vno, Vni, ---, Vn(mfl)] (25)
(v) To calculate velocity vy, through v, vi, ..., Vo_1,Vn0, Vni, ..., Vn(m—1) by equation

(2) and the bubble wall point radius vector r by boundary condition (5);

(vi) Go to step iii for (n + 1, m), when n < N, for (0,m + 1), when n = N and m < M, and
stop the algorithm when n = N and m = M.

The method allows us obtaining the bubble shapes at different acoustic field characteristics
and fluid rheological properties. Obtained results for two subclasses of fluids (nonlinear viscous
anisotropic and viscoelastic anisotropic) are presented in next section.

4. Obtained results
4.1. Nonlinear viscous anisotropic fluids case
As previously mentioned, the viscosity tensor in nonlinear viscous anisotropic fluids is presented

as
(%k 8’[)1

and fluid viscosity (n;jx) is determined by two parameters 7 and 7. Obtained shapes of

gaseous bubble at different frequencies of acoustic field and relations between viscosities (1) /1.1)

in different directions is presented in following Figure 2.
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Figure 2. Bubble shapes in nonlinear viscous anisotropic fluids (unit division in axes is 1
pm; horizontal axis is xg; vertical axis is x7).

As follows from the figures, decreasing of the ratio between viscosities in the longitudinal and
transverse directions leads to increase of deformation of the cavitation bubble. Thus, gaseous
bubble has the largest dimensions in the longitudinal direction, since the fluid at shear in a given
direction has the smallest viscosity. However, increasing of the acoustic field frequency causes
the cavitation bubble shape is close to spherical. This happens due to the Reynolds number
increasing and the viscosity influence weakening.

4.2. Viscoelastic anisotropic fluids case
As previously mentioned, the viscosity tensor in viscoelastic anisotropic fluids is presented as

zi:zi: _— <8vk oy ) (27)

6$k

and fluid rheological properties are determined by four parameters 7, 7., 7| and 7.
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Figure 3. Bubble shapes in viscoelastion anisotropic fluids (unit division in axes is 1 pm;
horizontal axis is z3; vertical axis is x1).

20 ps

Obtained shapes of gaseous bubble at different intensities, relaxation times (7, ) and relations
between viscosities (7/7.) in different directions is presented in following Figure 3.

As follows from the figures, decreasing of the ratio between viscosities in the longitudinal and
transverse directions leads to an increase of deformation of the cavitation bubble, that is similar
to nonlinear viscous anisotropic fluid case. However, increasing of the relaxation time causes
the cavitation bubble shape is close to spherical. This is due to decreasing of viscosity tensor

components absolute values, because in this case viscosity stresses is inertial, and its values is
n

~ —=,
wT

5. Conclusion

Thus, the model of gaseous bubble oscillations in anisotropic non-Newtonian fluid was developed.
To calculate bubble shape, the method based on asymptotical decomposition into Reynolds and
Eulerian numbers power series of flow parameters was developed. This allowed evaluating the
bubble size and shape achieved during oscillation and depending on rheological properties of
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anisotropic non-Newtonian fluids and acoustic field characteristics. It can be used for further
investigations aimed at determination of charateristics of shock wave generated during cavitation
bubble collapse. Shock wave characteristics will allow to analyse cavitation influence on
molecular structure of fluid and evaluate acoustic influence modes providing required properties
of the fluids and materials produced on their basis.
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