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Abstract. An inverse coefficient problem is considered for a stationary nonlinear convection–
diffusion–reaction equation, in which reaction coefficient has a rather common dependence on
substance concentration and on spacial variable. The solvability of the considered nonlinear
boundary value problem is proved in a general case. The existence of solutions of the inverse
problem is proved for the reaction coefficients, which are defined by the product of two
functions. The first function depends on a spatial variable, the second one depends nonlinearly
on the solution of the boundary value problem. The mentioned inverse problem consists in
reconstructing the first function with the help of additional information provided by the solution
of the boundary value problem.

1. Introduction. Solvability of the boundary value problem
Inverse problems research for linear and nonlinear heat-and-mass transfer models has been
an urgent issue during a long period of time. One of the main problems is an identification
problem of unknown densities of boundary and distributed sources or of models differential
equations coefficients or boundary conditions with the help of additional information about
systems conditions, which is described by the model. The studying of such inverse problems can
be reduced to the studying of corresponding extremal problems using the optimization method
[1]. A number of papers is dedicated to the description of this method for heat-and-mass transfer
and other hydrodynamic models [2]–[10].

In this paper an inverse problem is studied in the case when the recovering reaction coefficient
depends nonlinearly on both the boundary value problems solution and the spatial variable. The
last one generalizes the statements of inverse coefficient problems from [5]–[9], where coefficients
are searched in case of spatial variable dependence, and also of identification problem studied in
[11, 12], where reaction coefficients depending only on solution were examined and at the same
time the right part of the equation was recovered.

In a bounded domain Ω ⊂ R3 with the boundary Γ the following boundary value problem is
considered

−λ∆ϕ+ u · ∇ϕ+ k̃(ϕ,x)ϕ = f in Ω, ϕ = 0 on Γ. (1)

Here function ϕ means polluting substance concentration, u is a given vector of velocity, f is
a volume density of external sources of substance, λ is a constant diffusion coefficient, function
k̃(ϕ,x), where x ∈ Ω, is a reaction coefficient. This problem (1) will be called problem 1 below.
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In this paper firstly a global solvability and local uniqueness of the problem 1 solution
is proved, when the reaction coefficient depends on either substance concentration or spatial
variables and functions belonging to a rather wide class. Then an identification problem is
formulated for the reaction coefficients in the form of k̃ = β(x)k(ϕ), which consists of function
β(x) recovered using the measured substance concentration in a subdomain Q ⊂ Ω. At that, the
conditions on functions β(x) and k(ϕ) are also rather general. It should be mentioned that the
multiplicative structure of the reaction coefficient gives an opportunity to take into account a
rather wide-spread dependence of a reaction velocity on a concentration of a reacting substance
from the one side, and from the other one allows us to take into consideration the effect of
different types of chemical reaction behavior in the considered domain.

While studying problem 1 and optimal control problems, Sobolev spaces will be used: Hs(D),
s ∈ R Lr(D), 1 ≤ r ≤ ∞, where D is either a domain Ω or its boundary Γ. Inner products in
L2(Ω) and H1(Ω) are denoted by (·, ·) (·, ·)1, inner products in L2(Γ) is denoted by (·, ·)Γ, norm
in L2(Ω) is denoted by ‖ · ‖Ω, norm or semi-norm in H1(Ω) is denoted by ‖ · ‖1,Ω or | · |1,Ω. Also
let Z = {v ∈ L4(Ω) : divv = 0 in Ω}.

It will be assumed that the following conditions hold:
(i) Ω is a bounded domain in R3 with boundary Γ ∈ C0,1;
(ii) u ∈ Z, f ∈ L2(Ω);
In the papers [11, 12] the reaction coefficient k(ϕ) was considered in case, when it was not a

function of ϕ in ordinary sense, as in [13], but was denoted as an operator k(ϕ) : H1(Ω)→ Lp+(Ω),
where p ≥ 3/2, such as for any w1, w2 ∈ Br = {w ∈ H1(Ω) : ‖w‖1,Ω ≤ r} an estimate takes
place:

‖k(w1)− k(w2)‖Lp(Ω) ≤ L‖w1 − w2‖L4(Ω), (2)

were L is a constant, depending on r, but not depending on w1, w2.
Let us mention that power functions k(w) = w2 and k(w) = w2|w| also satisfy the inequality

(2). Indeed, for the function k(w) = w2|w| from [14, 15] the estimate is true:

‖k(w1)−k(w2)‖3/2
L3/2(Ω)

=

∫
Ω

(w2
1|w1|−w2

2|w2|)3/2dΩ ≤
∫

Ω
|w1−w2|3/2(w2

1 + |w1w2|+w2
2)3/2dΩ ≤

≤ ‖w1 + w2‖3L6(Ω)‖w1 − w2‖3/2L3(Ω) ≤ (2C6r)
3‖w1 − w2‖3/2L3(Ω) ≤ (2C6r)

3‖w1 − w2‖3/2L4(Ω),

which means that this function satisfy the inequality (2). For k(w) = w2 the reasoning is the
same.

Further let us make an example of the operator k(ϕ), satisfying (2) and not being an ordinary

function of ϕ: k(ϕ) = ϕ2 in a subdomain Q ⊂ Ω and k(ϕ) = k0 in Ω \Q, where k0 ∈ L3/2
+ (Ω).

In the present paper the reaction coefficient dependence on either problem 1 solution or the
spatial variable x ∈ Ω is emphasized. Let us suppose that it is true for the reaction coefficient
k̃(w,x):

(iii) for any w1, w2 ∈ Br = {w ∈ H1(Ω) : ‖w‖1,Ω ≤ r} the estimate takes place:

‖k(w1,x)− k(w2,x)‖Lp(Ω) ≤ L‖w1 − w2‖L4(Ω), x ∈ Ω,

where L is a constant, which depends on r, but does not depend on w1, w2.
Let us note that in the condition (iii) the constant L can depend not only on r. For

example, the constant L also depends on ‖β1(x)‖H2(Ω) for the reaction coefficient k̃(ϕ,x) =

β1(x)k(ϕ) + β2(x), where β1(x) ∈ H2
+(Ω), β2(x) ∈ L2

+(Ω), and the operator k(ϕ) was denoted
above.

Let D(Ω) be the space of infinitely differentiable, finite functions in Ω, H1
0 (Ω) be the

closure of D(Ω) in H1(Ω), H−1(Ω) = H1
0 (Ω)∗. The Poincare-Friedrichs inequality holds:
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|ϕ|21,Ω ≥ δ‖ϕ‖21,Ω ∀ϕ ∈ H1
0 (Ω), where δ = const > 0, Lp+(Ω) = {k ∈ Lp(Ω) : k ≥ 0}, p ≥ 3/2,

Hs
+(Ω) = {h ∈ Hs(Ω) : h ≥ 0}, s ≥ 0.
Let us also remind that on the strength of Sobolev embedding theorem the space H1(Ω)

embeds in the space Ls(Ω) continuously at s ≤ 6 and compactly at s < 6, and the estimate
takes place with some constant Cs, depending on s and Ω

‖ϕ‖Ls(Ω) ≤ Cs‖ϕ‖1,Ω ∀ϕ ∈ H1(Ω). (3)

The following Green’s theorem will be used (see [10, p. 128] for more details about it):

(∆ϕ, η) = −(∇ϕ,∇η) + 〈∂ϕ/∂n, η〉Γ ∀ϕ ∈ H1(∆,Ω), η ∈ H1(Ω), (4)

(u · ∇ϕ, η) = −(u · ∇η, ϕ) ∀u ∈ Z, ϕ, η ∈ H1
0 (Ω). (5)

Here and below 〈·, ·〉Γ means the relation of duality between H1/2(Γ) and H−1/2(Γ).
For any function k0 ∈ Lp+(Ω), p > 1 Holder’s inequality for three functions holds:

|(k0ϕ, η)| ≡ |
∫

Ω
k0 ϕηdx| ≤ ‖k0‖Lp(Ω)‖ϕ‖Lq(Ω)‖η‖Lr(Ω),

1

p
+

1

q
+

1

r
= 1, q > 1, r > 1. (6)

Let us denote bilinear forms au and a0: H1
0 (Ω)×H1

0 (Ω)→ R by formulae

au(ϕ, η) = (u · ∇ϕ, η) =

∫
Ω

(u · ∇ϕ)ηdx, a0(ϕ, η) = λ(∇ϕ,∇η) + au(ϕ, η) + (k0ϕ, η). (7)

Using (3), (5), (6), it is not difficult to check that when conditions (i), (ii) and k0 ∈ Lp+(Ω), p ≥
3/2 hold, then the forms, introduced in (7), are continuous and

|au(ϕ, η)| ≤ |(u · ∇ϕ, η)| ≤ γ1‖u‖L4(Ω)‖ϕ‖1,Ω‖η‖1,Ω ∀(ϕ, η) ∈ H1
0 (Ω)2, (8)

|(k0ϕ, η)| ≤ γp‖k0‖Lp(Ω‖ϕ‖1,Ω‖η‖1,Ω ∀(ϕ, η) ∈ H1
0 (Ω)2, (9)

au(ϕ,ϕ) = 0, a0(ϕ,ϕ) = λ(∇ϕ,∇ϕ) + (k0ϕ,ϕ) ≥ λ∗‖ϕ‖21,Ω ∀ϕ ∈ H1
0 (Ω), λ∗ ≡ δλ. (10)

Here γ1 or γp are some constants, which depend on Ω or on Ω and p correspondingly. From
(8)–(10) it follows that for any function k0 ∈ Lp+(Ω), p ≥ 3/2 the form a0(·, ·) is continuous and
coercitive with the constant λ∗ on H1

0 (Ω). In its turn, this estimate results from (9) and (iii):

|((k(ϕ1,x)−k(ϕ2,x))ϕ, η)| ≤ γpL‖ϕ1−ϕ2‖L4(Ω)‖ϕ‖1,Ω‖η‖1,Ω ∀ϕ1, ϕ2 ∈ Br, ϕ, η ∈ H1
0 (Ω). (11)

Let us multiply the equation in (1) by h ∈ H1
0 (Ω) and integrate over Ω, applying the formula

(4). Then this will be obtained:

λ(∇ϕ,∇h) + (k(ϕ,x)ϕ, h) + (u · ∇ϕ, h) = (f, h) ∀h ∈ H1
0 (Ω). (12)

The function ϕ ∈ H1
0 (Ω), which satisfies (12), will be called a weak solution of problem 1.

The proof of problem (12) solvability will be conducted with the help of Schauder fixed
point theorem according to the scheme, which is described in [10] for nonlinear hydrodynamic
models. For this purpose let us define a mapping G : H1

0 (Ω)→ H1
0 (Ω), which sticks with formula

G(w) = ϕ for w ∈ H1
0 (Ω). Here function ϕ ∈ H1

0 (Ω) is the solution of the linear problem

aw(ϕ, h) = λ(∇ϕ,∇h) + (k(w,x)ϕ, h) + (u · ∇ϕ, h) = (f, h) ∀h ∈ H1
0 (Ω). (13)

Since k(w,x) ∈ Lp+(Ω), p ≥ 3/2 for any w ∈ H1(Ω) on the strength of conditions (iii), then
according to (10) the form aw : H1

0 (Ω) × H1
0 (Ω) → R, introduced in (13), is continuous and
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coercitive with the constant λ∗ = δλ, and the problem (13) has a unique solution ϕ ∈ H1
0 (Ω),

for which the estimate holds
‖ϕ‖1,Ω ≤Mϕ ≡ C∗‖f‖Ω. (14)

Let us inject in the space H1
0 (Ω) the sphere Br = {w ∈ H1

0 (Ω) : ‖w‖1,Ω ≤ r}, where r = Mϕ.
From the construction of the sphere Br and from (14) follows that the operator G, which was
defined above, is a mapping of Br into itself. Let us prove that G is continuous and compact
on Br. Let {wn}∞n=1 be a random sequence from Br. On the strength of reflexivity of the space
H1

0 (Ω) and of embedding compactness H1
0 (Ω) ⊂ L4(Ω) there is a subsequence of the subsequence

{wn}∞n=1, which can be again denoted by {wn}∞n=1, and there is also a function w ∈ Br such as
wn → w weakly in H1(Ω), wn → w strongly in L4(Ω) at n → ∞. Let ϕn = G(wn), ϕ = G(w).
These equalities mean that ϕ ∈ H1

0 (Ω) is the solution of problem (13) and ϕn ∈ H1
0 (Ω) is the

solution of problem

λ(∇ϕn,∇h) + (k(wn,x)ϕn, h) + (u · ∇ϕn, h) = (f, h) ∀h ∈ H1
0 (Ω), (15)

which is obtained from (13) by substituting w for wn, ϕ for ϕn. Let us demonstrate that
ϕn → ϕ strongly in H1(Ω) at n→∞. For that purpose let us subtract (13) from (15). Taking
into consideration that (k(wn,x)ϕn, h) − (k(w,x)ϕ, h) = (k(w,x)(ϕn − ϕ), h) + ((k(wn,x) −
k(w,x))ϕn, h), the following will be got

λ(∇(ϕn − ϕ),∇h) + (k(w,x)(ϕn − ϕ), h) + (u · ∇(ϕn − ϕ), h) =

= −((k(wn,x)− k(w,x))ϕn, h) ∀h ∈ H1
0 (Ω). (16)

Using the estimate (11) at ϕ1 = wn, ϕ2 = w, ϕ = ϕn and the estimate ‖ϕn‖1,Ω ≤ Mϕ for
n = 1, 2..., resulting from (14), it can be obtained that

|((k(wn,x)− k(w,x))ϕn, h)| ≤ γpLMϕ‖wn − w‖L4(Ω)‖h‖1,Ω → 0 n→∞ ∀h ∈ H1
0 (Ω). (17)

Then from (16) on the strength of (17) and (10) follows that ‖ϕn − ϕ‖1,Ω → 0 at n→∞. This
implies continuity and compactness of the operator G. In such case it follows from the Schauder
fixed point theorem that the operator G has a fixed point ϕ = G(ϕ) ∈ H1

0 (Ω). That is the point
ϕ, which is the searched solution of problem (12).

Let us determine the sufficient conditions for the uniqueness of problem (12) solution. Let
ϕ1, ϕ2 ∈ H1

0 (Ω) be two solutions of problem (12), for which the estimate (14) takes place.
Obviously, the difference ϕ = ϕ1 − ϕ2 satisfies the relation

λ(∇ϕ,∇h) + (k(ϕ2,x)ϕ, h) + (u · ∇ϕ, h) = −((k(ϕ1,x)− k(ϕ2,x))ϕ1, h) ∀h ∈ H1
0 (Ω). (18)

Reasoning like above, when the estimate (17) was obtained, it can be shown that

|((k(ϕ1,x)− k(ϕ2,x))ϕ1, h)| ≤ γpC4LMϕ‖ϕ1 − ϕ2‖1,Ω‖h‖1,Ω. (19)

Here C4 is a constant, which is included in (3) at s = 4. As on the strength of (iii)
k(ϕ2,x) ∈ Lp+(Ω), then it follows from (10) subject to (19) and from the equality Mϕ = C∗‖f‖Ω
that ‖ϕ‖1,Ω ≤ C2

∗γpC4L‖f‖Ω‖ϕ‖1,Ω. Let the condition hold

γpC4L‖f‖Ω < λ2
∗ = C−2

∗ . (20)

Then from the previous inequality it follows that ‖ϕ‖1,Ω = 0, and, accordingly, ϕ1 = ϕ2. Let us
formulate the received results as the following theorem.
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Theorem 1. Let conditions (i)–(iii) hold. Then there is a weak solution ϕ ∈ H1
0 (Ω) of the

problem 1 and the estimate (14) is met. If, besides, the condition (20) is satisfied, then the
problem 1 weak solution is unique.

While studying extremal problems, it will be assumed that the function k̃(ϕ,x) satisfies the
condition

(iv) k̃(ϕ,x) = β(x)k(ϕ), where β(x) ∈ H1
+(Ω), while the function k(ϕ) ∈ L2

+(Ω) and on any
sphere Br = {ϕ ∈ H1(Ω) : ‖ϕ‖1,Ω ≤ r} the inequality holds

‖k(ϕ1)− k(ϕ2)‖Ω ≤ L‖ϕ1 − ϕ2‖L4(Ω) ∀ϕ1, ϕ2 ∈ Br. (21)

Here L is a constant, depending on r, but not depending on ϕ1, ϕ2 ∈ Br.
Conditions (iv) describe a particular type of function k̃(ϕ,x), satisfying the conditions (iii).

Indeed,
‖β(x)(k(ϕ1)− k(ϕ2))‖L3/2(Ω) ≤ ‖β(x)‖L6(Ω)‖k(ϕ1)− k(ϕ2)‖Ω ≤

≤ L‖β(x)‖1,Ω‖ϕ1 − ϕ2‖L4(Ω).

It is clear that the function k̃(ϕ,x) = β(x)ϕ2 satisfies the condition (iv), because for any
ϕ2 the estimate (21) is true. It is interesting to mention that at k̃(ϕ,x) = β(x)ϕ2 there is a
nonlocal (i.e. without smallness condition (20)) uniqueness of problem 1 solution. Actually, let
ϕ1, ϕ2 ∈ H1

0 (Ω) be two solutions of the problem 1 at k̃(ϕ,x) = β(x)ϕ2. Then their difference
ϕ = ϕ1 − ϕ2 satisfies the relation

λ(∇ϕ,∇h) + (β(x)(ϕ2
1 + ϕ1ϕ2 + ϕ2

2), ϕh) + (u · ∇ϕ, h) = 0 ∀h ∈ H1
0 (Ω).

As ϕ2
1 + ϕ1ϕ2 + ϕ2

2 ≥ 0 a.e. in Ω and β(x) ∈ H1
+(Ω), then it follows form (10) that ϕ = 0.

Let us note another possible kind of dependence k(ϕ) = ϕ2|ϕ|, considered in [14, 15].
However, to deal with such coefficient, stricter conditions for the function β(x) should be used,
for example, β(x) ∈ H2(Ω).

2. Statement of the optimal control problem and its solvability
There are a lot of situations in practice, when some parameters of problem 1 are unknown and it
is required to determine them together with the solution ϕ according to some information about
the solution. On the capacity of the mentioned information about solution, the values ϕd(x) of
the concentration ϕ are often taken, which can be measured in points of some set Q ⊂ Ω.

The case will be studied below, when the function β(x) is unknown, should be searched
together with the solution ϕ and is multiplicatively included in reaction coefficient k̃(ϕ,x) =
β(x)k(ϕ), will be studied. To solve this inverse problem the optimization method will be
used, according to which the considered problem is reduced to solving the control problem.
In compliance with this method the whole set of initial data of problem 1 is divided into two
groups: the group of fixed data, where functions u, f and k(ϕ) will be included, and the group
of controls, which consists of function β(x), assuming that it can be changed in some set K.

Let us introduce an operator F : H1
0 (Ω)×K → H−1(Ω) by formula

〈F (ϕ, β), h〉 = λ(∇ϕ,∇h) + (β(x) k(ϕ)ϕ, h) + (u · ∇ϕ, h)− (f, h).

Then (12) can be rewritten in the following form:

F (ϕ, β) = 0. (22)

Treating (22) as a conditional restriction on the state ϕ ∈ H1
0 (Ω) and on the control β ∈ K,

the problem of conditional minimization can be formulated as follows:

J(ϕ, β) ≡ µ0

2
I(ϕ) +

µ1

2
‖β‖21,Ω → inf, F (ϕ, β) = 0, (ϕ, β) ∈ H1

0 (Ω)×K. (23)
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Here I : H1
0 (Ω)→ R is a weakly semicontinuous below functional.

The set of possible pairs for problem (23) is denoted by Zad = {(ϕ, β) ∈ H1
0 (Ω) × K :

F (ϕ, β) = 0, J(ϕ, β) <∞} and let us suppose that these conditions hold
(j) K ⊂ H1

+(Ω) is a nonempty convex closed set;
(jj) µ0 > 0, µ1 ≥ 0 and K is a bounded set or µ0 > 0, µ1 > 0 and functional I is bounded

below.
The following cost functionals can be used in the capacity of the possible ones [10]:

I1(ϕ) = ‖ϕ− ϕd‖2Q =

∫
Ω
|ϕ− ϕd|2dx, I2(ϕ) = ‖ϕ− ϕd‖21,Q. (24)

Here ϕd ∈ L2(Q) (or ϕd ∈ H1(Q)) is a given function in some subdomain Q ⊂ Ω.
Theorem 2. Let conditions (i), (ii), (iv) and (j), (jj) hold, k(ϕ) ∈ L3(Ω), I : H1

0 (Ω)→ R is
a weakly semicontinuous below functional, and Zad is nonempty set. Then there is at least one
solution (ϕ, β) ∈ H1

0 (Ω)×K of optimal control problem (23).
Proof. Let (ϕm, βm) ∈ Zad be a minimizing sequence for the functional J , for which the

following is true:
lim
m→∞

J(ϕm, βm) = inf
(ϕ,β)∈Zad

J(ϕ, β) ≡ J∗.

That and the conditions of theorem for the functional J from (23) imply the estimate ‖βm‖1,Ω ≤
c1. From theorem 1 follows directly that ‖ϕm‖1,Ω ≤ c2, where constants c1, c2 do not depend on
m.

Then the weak limits ϕ∗ ∈ H1
0 (Ω) and β∗ ∈ K of some subsequences of the sequences {ϕm}

and {βm} exist. Corresponding sequences will be also denoted by {ϕm} and {βm}. With this
in mind it can be considered that

ϕm → ϕ∗ ∈ H1
0 (Ω) weakly in H1(Ω) and strongly in Ls(Ω), s < 6, (25)

βm → β∗ ∈ K weakly in H1(Ω) and strongly in Ls(Ω), s < 6. (26)

Let us show that F(ϕ∗, β∗) = 0, i.e.

λ(∇ϕ∗,∇h) + (β∗k(ϕ∗)ϕ∗, h) + (u · ∇ϕ∗, h) = (f, h) ∀h ∈ H1
0 (Ω). (27)

And it should be taken into account that the pair (ϕm, βm) satisfies the relations

λ(∇ϕm,∇h) + (βmk(ϕm)ϕm, h) + (u · ∇ϕm, h) = (f, h) ∀h ∈ H1
0 (Ω), m = 1, 2, ... . (28)

Let us pass to the limit in (28) at m→∞. All linear summands in (28) turn into corresponding
ones in (27).

From condition (iv) follows that k(ϕm)→ k(ϕ) strongly in L2(Ω). Taking into account (26),
it is not difficult to show that

βmk(ϕm)→ βk(ϕ) strongly in L3/2(Ω).

Really,∫
Ω

(βmk(ϕm)− βk(ϕ))3/2dΩ ≤
∫

Ω
C̃k(ϕ)3/2(βm − β)3/2dΩ +

∫
Ω
C̃β3/2

m (k(ϕm)− k(ϕ))3/2dΩ ≤

≤ C̃‖k(ϕ)‖1/2L3(Ω)‖βm − β‖
1/2
L3(Ω) + C̃‖βm‖1/4L6(Ω)‖k(ϕm)− k(ϕ)‖3/4L2(Ω) → 0 at m→∞.

On the strength of (25) ϕmh → ϕh weakly in L3(Ω) at m → ∞ for all h ∈ H1
0 (Ω). This

allows to pass to the limit in the nonlinear summand in (28).
As the functional J is weakly semicontinuous below on H1

0 (Ω)×H1(Ω), then from aforesaid
follows that

J∗ = lim
m→∞

J(ϕm, βm) = limm→∞J(ϕm, βm) ≥ J(ϕ∗, β∗) ≥ J∗.

In more general case, when k(ϕ) ∈ L2
+(Ω), the theorem 2 should be proved further as in [12].
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