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Abstract. In the paper a model for description of a hydraulic fracture propagation in
inhomogeneous poroelastic medium is proposed. Among advantages of the presented numerical
algorithm, there are incorporation of the near-tip analysis into the general computational
scheme, account for the rock failure criterion on the base of the cohesive zone model, possibility
for analysis of fracture propagation in inhomogeneous reservoirs. The numerical convergence
of the algorithm is verified and the agreement of our numerical results with known solutions is
established. The influence of the inhomogeneity of the reservoir permeability to the fracture
time evolution is also demonstrated.

1. Introduction

Hydraulic fracturing is an important part of modern technologies for intensification of
hydrocarbon production. The propagation of the hydraulic fracture is stimulated by the pumping
of viscous fluid which creates pressure on fracture’s walls high enough to overcome the rock
closure stresses and cause the rock failure. Process of the hydraulic fracture growth is governed
by several factors: flow of viscous fluid in a narrow fracture’s gap, elastic reaction of the fracture’s
walls, filtration of fluid from the fracture to the reservoir, rock failure and advance of the fracture
tip. Description of the hydraulic fracture dynamics is a complicated problem that is rarely solved
in its most general formulation. Recent progress in the mathematical modelling of hydraulic
fracture dynamics is described in review papers [1, 2].

In the present work the poroelastic model proposed in [3] is extended to the case of
propagating fractures. The model allows determination of the porous pressure and the rock
deformation coupled with the fracture disclosure and the pressure of the fracturing fluid. The
material of the formation is observed as an inhomogeneous permeable medium governed by the
Biot poroelasticity equations [4, 5]. The advantages of this approach in comparison with the
classical approaches based on the KGD and PKN models (see [1, 2]) are the correct account
for the interaction of the pore fluid with the fracturing fluid, finiteness of fluid pressure in the
fracture’s tip, readiness for modelling of reservoirs with inhomogeneous physical properties under
non-uniform closure stresses.

The numerical solution of the problem was carried out by the finite element method with the
use of a modification of the algorithm proposed in [3]. The advantages of this algorithm is lack
of necessity for explicit track of the fracture’s tip and corresponding remeshing, which is typical
for contact problems of this type. The numerical convergence of the algorithm and possibility
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for computation of problems of the scale required for the engineering practice with a satisfactory
accuracy is demonstrated. Also we present some results demonstrating the dependence of the
fracture geometry and propagation behavior on the inhomogeneity of reservoir permeability.

2. Mathematical formulation of the problem

In this paper we make use of the model proposed in [3]. The mathematical problem is formulated
in the following way. Let us consider a vertical planar fracture of fixed height H, propagating
along the = axis (see Figure 1). Oz axis is directed upwards relative to the Ozy-plane. The
fracture is opening along y direction due to the pressure generated by the fluid flow inside the
fracture. Following [3] we suppose that fracture aperture is constant along z-coordinate and
vertical deformations are negligible. This implies, that we can limit ourselves to the plane strain
approximation observing only the central cross-section z = 0 of the fracture.

The poroelastic medium is characterized by its porosity ¢ and permeability k,(x), with the
solid phase displacement u(t,x), and the pore pressure p(t,x). Pores are saturated by a single-
phase Newtonian fluid with the effective viscosity n,.. The linear Darcy’s law for the fluid velocity
q = —(ky/n,)Vp is employed. It is supposed that the fluid filtrating from the fracture to the
reservoir has the same viscosity as the pore fluid. However, the fluid injected into the fracture
has different viscosity 7. It corresponds to the normal situation in hydraulic fracturing when
the fracturing fluid is a high-viscous gel and only its low-viscous base fluid is filtrated into the
reservoir.

For generality, the reservoir is initially subjected to a prestress with the stress tensor 7o (z, y).
Hereafter, only planar fractures propagating along Oz axis are observed, therefore, the tensor
Ty satisfies the symmetry conditions relative to this axis.

The governing equation of the quasi-static poroelasticity model is the following:

divr =0, 7=79+Adivul+2u&(u) — apl,

S’E@ = div (
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Here £(u) is the Cauchy’s strain tensor 2€(u);; = Ou;/0x; + Ou;/0x; (i,j = 1,2), « is the
Biot coefficient, A(x) and p(x) are elasticity moduli, I is the identity tensor. The storativity S.
reflects the dependence of the Lagrangian porosity ¢ on € = tr £ and p as in [6]:
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where K = \ + i is the bulk modulus, ¢g is the initial porosity. Due to the plane strain

approximation, the solid phase displacement vector u = (uj,u2) = (u,v) is two-dimensional, all
vector operations are also taken in 2D space of independent variables (z1,z2) = (z,y).

Symmetry of the problem with respect to Oz-axis makes it possible solving equations (1)
in domain Q = {(z,y) : || < R,0 < y < R} as shown in Figure 2. Over the outer boundary
I'r : |x|cc = R, the confining far-field stress o is applied and the constant pore pressure
P = Poo 18 prescribed:

Fr: p=po, T(N)=0c, (T(n));=rTijn;. (3)

Henceforth, n and s denote the outer normal and tangential unit vectors to the boundary
of the domain 2; the summation over the repeating index is implied. We restrict ourselves to
the case with o, = —0€2, Where o, is a scalar function. Moreover, it is assumed that the
presstress Ty satisfies the same boundary condition: 7o(n)|r, = Ow.
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Figure 1. Planar vertical hydraulic fracture = Figure 2. The horizontal cross-section of the
in a poroelastic medium fracture by plane z =0

The line y = 0 is divided into the part I'y = {—L(t) < x < L.(t), y = 0} occupied by the
fracture, and the remaining part I's = {—R < < —Ly(t), y = 0} U{L,(t) < z < R, y = 0}.
Outside the fracture on I's the symmetry conditions (see [3]) are satisfied:

ou op
Iy: — =0 =0, —=0. 4
S ay ’ v Y 8y ( )

With py(t,x) standing for the fluid pressure inside the fracture, the force balance over the
fractures walls yields

I'ty: p=ps, n-7(n)=—pr+0cn s-7(n)=0. (5)

Here the tangential stress due to the fluid friction on the fractures walls in comparison with the
normal stress is neglected.

In order to account for the rock failure during fracturing, the cohesive zone model is adopted
as a fracture propagation criterion. Such an approach was initially proposed by Barenblatt [7]
and Dugdale [8], where they postulated the existence of cohesive forces o, (see Figure 3),
which act in the zone of micro-cracking and plastic deformations in the vicinity of the fracture
tips and prevent opening of the fracture. On the computational side, presence of cohesive
forces removes the stress singularity at the fracture tip inherent to the Linear Elastic Fracture
Mechanics (LEFM) by making the fracture aperture smoothly vanishing towards the tip.

We use the following traction/separation bi-linear law [9] to reflect the dependence of o,
on the half of the fracture aperture w as shown in Figure 4:

Oc—, 0 < w< Wy,
W
We — W
Ucoh(w) = JC(U}C — wm)a Wy W K We, (6)
0, w = We

The cohesive forces reach their maximum value near the fracture tip. The region of the
softening behaviour is limited by w.. It is calculated from the considerations that the release of
energy during the creation of the new fracture surface is equal to the work of the cohesive forces
on the fracture opening. Hence,

Ge = 0w, (7)
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Figure 3. Cohesive zone near the fracture tip Figure 4. Bi-linear traction/separation law

where G, is the energy release rate from the Griffiths’s theory of brittle fractures [10], o. is the
critical cohesive stress value. The elastic region of cohesive forces is small, w,, = 2.5 x 10~ %w,..
It is required to regularize the cohesive energy near w = 0 [11].

If the cohesive zone is small relative to the fracture length, the connection with the fracture
toughness K. from LEFM is given by the Irvin’s formula [12]:

/ E
KIC - Gcma (8)

where FE is the Young’s modulus and v is the Poisson’s ratio.
The fluid flow in the fracture is governed by the mass conservation law complemented with
the Poiseuille formula:

ow  9(wg) _ _ _ (2w)® 9py
E—i_ or qai, w_v’y:07 q= 127, oz 9)

Here ¢ is the fluid velocity in z-direction. No fluid lag is assumed at the fracture tip.
The leak-off velocity ¢; is given by the Darcy law in the reservoir as
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The resulting equation governing the flow inside the fracture reads

ow 0 <w3 apf>+k:,nﬁp
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(11)

y=0

The flow rate (per unit height) injected into the fracture upper half-plane is calculated as

_ @) w® Opy
2H 3ny Ox

w® dpy
2=0+ 3ny Ox

Qt) (12)
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where the division by 2 shows that the total flow rate is equally distributed between the
symmetric fracture parts, and Q,(t) denotes the volumetric flow rate injected into the wellbore.

Equation (11) is often referred to as the lubrication theory equation [1]. Note that, due
to the right-hand side of (10), equation (11) represents a boundary condition for equations of
the main model (1). The leak-off rate ¢; arises here naturally in the course of the problems
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solution, which differentiates the model favourably from the usual artificial approximations like
the Carters formula or other similar expressions [13].
In order to close the model it is supplemented with the initial data at some moment ¢°:

uf,_0 = 110(957?/)7 Pli=io = po(ac,y), Lij—0 = L?u t=4,r. (13)

For computational reasons, it is convenient to homogenise the conditions over the outer
boundary I'r. It can be done by considering stresses inside the reservoir relative to the prestress
state 79, and taking p., as a reference pressure. Similar to [3] the following new sought functions
are introduced:

QPoo

H=—— T=T—T9, P=0P— Poo- 14

u=1u— xX,

Substituting (14) into equations (1) and taking into account boundary conditions (3), (4), (5),
(11), (12), we obtain the following problem

Q: dive=—divry, 7=Adival+2u&(@) — apl, (15)
0 . (k.__ on
Q: 8.5 =div (EVp - aE), (16)
Tp: p=0, +n)=0, (17)
T,: 1,=0, 9=0, p,=0, (18)
I'r: n-7(n) = —(pP+po) —0-70(0) + 0cop, s-7(m) =0, (19)
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In what follows, we work with the new sought functions skipping the tilde for simplicity of
notations.

3. Numerical algorithm
In this Section the numerical method to solve the problem stated in Section 2 is provided. To
accomplish this, firstly, we write the variational formulation of the problem. Following [3] let us
choose a smooth vector-function ¢ = (¢1(z,y),¥2(z,y)) and a smooth scalar function ¢(z,y)
such that

w2|Fs = 07 (P‘FR =0. (21)

Then, we multiply equations (15) and (16) by % and ¢, respectively, and integrate over €.
Taking into account the boundary conditions (17)—(20), after integration we obtain

/()\div () — ap)div () + 2u&(u) : £(4) dedy —

Q

— /(p—i—poo +n- T(]<Il> + O'Coh)wg dxr =0, (22)
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This formulation is not convenient on the computational use because of the necessity to track
the fracture tips and change the size of I'y at every time step. Therefore, we modify I'y by
regarding it as a potential fracture, which has closed part with v = 0 and the opened part with
v > 0. However, under such interpretation the absence of the interpenetration of the opposite
fracture walls in the computations cannot be guaranteed. In order to avoid this problem we

impose the restriction
Tj: v>0, (24)

by adding the penalty term
1
=5 [ oo v da, (25)
Ly

into the variational formulation. Here § <1 is a small number, x[,<g] is the indicator function
of set {x:v(x) < 0}.

The problem (23), (23) with (25) is solved using the finite element method via the open-
source FEM package FreeFEM++ [14]. For the spatial discretization we use the piecewise-
linear Pl-elements over the triangulated computational domain 2. The time derivatives are

of _ - ym

approximated with the first order of accuracy: —— , where f denotes either of

functions u, v or p; At is a time step. The upper index designates the number of the time step:
f* = f(t",x), t" = tY + nAt. The computation starts with the intact state u’ = 0 and p° = 0
as the initial data. The non-linearity is resolved by the Newton-Raphson method.

4. Verification of the numerical algorithm

4.1. Convergence Test

In order to verify the algorithm we choose physical parameters typical for hydraulic fracturing
problem and check the numerical convergence. For the verification the reservoir is assumed to
be homogeneous. The reservoir is loaded by a uniform pre-stress caused by a far-field stress oqo:

To(n) = —0on.

The following physical input parameters are used in simulations: domain size R = 105 m,
maximal right tip position L"** = 40 m, maximal left tip position L]*** = 40 m, Young’s
modulus £ = 17 GPa, Poisson’s ratio v = 0.2, energy release rate G. = 120 Pa-m,
critical cohesive stress o. = 1.25 MPa, initial porosity ¢ = 0.2, reservoir permeability
k. = 107 m?, Biot coefficient o = 0.75, storage coefficient S, = 1.46 x 10! Pa~!, far-field
stress 0o = 10 MPa, reservoir pressure ps, = 0 MPa, reservoir fluid viscosity 7, = 1073 Pa-s,
fracturing fluid viscosity n; = 107! Pa-s, injection rate per unit height 2@ = 1072 m?/s. Given
Young’s modulus E and Poisson’s ratio v, elasticity moduli A and p are calculated via the known
formulas. The expression for the storage coefficient S; is given by formula (2).

Several simulations were conducted on the sequence of refining meshes. For the convergence
test we compute the maximal relative difference in Lo-norm between solutions on two successive
meshes:

(th —phs2ellie un —unpolle, [lon — vnj2llL,

Emaz(h) = max
e lpnlle, 7 Nunlle, 7 lvllz,

x 100% (26)
)
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The result of computations is demonstrated in Figure 5, where h = /S, is a mesh refining
parameter and Sy, is the maximal dimensionless area of all triangles in the corresponding
mesh. One can see that at h ~ 0.13 the relative difference between solutions is less than 2 %.
Therefore, this mesh was chosen for the further simulations.
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Figure 5. Relative difference in Lo-norm between solutions on two successive meshes for
different time moments

4.2. Comparison with existing models

According to [15], [16], in the case of KGD-model the fracture propagation is governed by
two competing energy dissipation mechanisms (viscous dissipation in fluid and creation of the
new fracture surface) and two fluid storage mechanisms (in the fracture and in the reservoir).
Therefore, there are four asymptotic regimes: storage-toughness dominated, leak-off-toughness
dominated, storage-viscosity dominated and leak-off-viscosity dominated ones. All these regimes
are demonstrated in paper [11] also in comparison with the analytical solution for KGD model.
As a part of the model verification, we compare our results with the corresponding calculations
of paper [11] in the case of the storage-toughness dominated regime.

The common input parameters used in simulations are the same as in Section 4.1, except
for the domain size R = 45 m and maximal right and left tip positions L;*** = L"%* = 15 m.
Also, we use equal viscosities for the reservoir and the fracturing fluids n, = 7y = 10~* Pa-s to
minimize the viscosity dissipation. Far-field stress is taken as oo, = 3.7 MPa. Two simulations
were carried out for permeabilities k, = 107 m? and k, = 10716 m? during 14 s and 20 s,
respectively, to ensure that the fracture propagates in the storage-toughness dominated regime.
According to [11], for this set of parameters the results are in a good agreement with the early-
time near-K solution [16] for the KGD model.

Good agreement of the fracture half-length in our model (solid lines 1, 2) and in [11] (marker
lines 5, 6) is demonstrated in Figure 6. It confirms the consistency between the resulting fracture
geometries and ones presented in [11]. A good match of the boundary of the cohesive zone (solid
lines 3, 4 and marker lines 7, 8) indicates compliance in the implementation of the cohesive zone
model.

5. Reservoir permeability contrast
In this Section, the model capabilities in the application to the hydraulic fracturing problem in
the heterogeneous reservoir are demonstrated. The interesting case occurs when the reservoir
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14.0

Fracture half-length, m

Figure 6. Fracture half-length in the is storage-toughness dominated regime: for k, = 10~ m?
(1) in present work, (5) in [11]; for k. = 10716 m? (2) in present work, (6) in [11]. Position of
the right boundary of the cohesive zone: for k. = 1071 m? (3) in present work, (7) in [11]; for
kr = 10715 m? (4) in present work, (8) in [11].

has two layers (see Figure 7) with different permeabilities:
*

107 m?, 2z < ¥,
hor (2) = 10716 m2, x> z*. (27)

Here, x = x* denotes the border between layers, pictured as the brown line in Figure 7. Thus,

Left| Layer AY | Right Layer
ky = 10714 m? %; k. = 10716 m?
= B =

. I LXTEE) T

Figure 7. Reservoir with high-permeable (left) and low-permeable (right) layers. The barrier
for fracture propagation is located in the high-permeable layer.

the leak-off from the fracture into the reservoir is higher in the left layer. The remaining
simulation parameters are the same as in Section 4.1, except for the computational domain size
parameters: R = 150 m, L*** = 40 m, L;"** = 73 m. We propose the existence of a barrier
located at z = —Lj"** that prevents propagation of the fracture behind the barrier border.

The goal is to study the fracture dynamics depending on the location of the low-permeable
layer relative to the injection point. Firstly, we place the layer border close to the wellbore at
x* = 3.5 m. Figure 8 (b) shows that the fracture reaches the layers border at ¢ ~ 35 s and
then proceeds its propagation further to the right. The leak-off in the low-permeable layer is
lower; hence, the fracture becomes wider. The source of fluid at the wellbore near the border
between the two layers supplies enough fluid to both sides of the fracture; therefore, the fracture
propagates faster into the low-permeable layer where loss of fluid into the reservoir is lower (see
Figure 8 (a)).



Nonlinear Waves: Theory and New Applications (Wavel6) IOP Publishing
Journal of Physics: Conference Series 722 (2016) 012003 doi:10.1088/1742-6596/722/1/012003

1.2
g
1o | =
—_—t=10s 2
0.8 —f = 355 E
: —— =405 E

Pressure, MPa

Fracture half-width, mm

7 13

(a)

Figure 8. Pressure (a) and fracture half-width (b) along the fracture at different time for
reservoir with two zones with high permeability contrast. The zones border (vertical brown
line) is located at z = 3.5 m

The different situation occurs if we shift the border between the two layers with different
permeabilities to * = 10 m (see Figure 9). The fracture propagates in both directions until the
right tip enters the layer border. This occurs at t =~ 200 s and after that the fracture propagates
to the left until the left fracture tip reaches the barrier at ¢ ~ 800 s. For 200 < ¢ < 800
the pressure at the injection point stays almost at the constant level and, due to the lower
permeability of the right layer, it becomes more difficult to increase the reservoir pressure for
the further fracture growth to the right behind layer border. Thus, more fluid flows to the left
half-wing of the fracture and only the left tip is moving. As the left tip reaches the barrier, it
stops. As a result, the pressure starts growing over the whole fracture. When it overcomes some
limit near the right layer border, the fracture breaks into the low-permeable layer and continues
its propagation to the right direction.
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Figure 9. Pressure (a) and fracture half-width (b) along the fracture at different time for
reservoir with two zones with high permeability contrast. The border between the permeability
zones (vertical brown line) is located at z = 10 m
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6. Conclusion

A numerical model of a hydraulic fracture propagating in a heterogeneous poroelastic medium is
presented in the paper. The proposed approach accounts the influence of the pore fluid and the
elastic rock deformation to the growth of the fracture. The fluid exchange between the reservoir
and the fracture is naturally incorporated into the model. This makes it possible to state the
complete problem in the single variational formulation with the mass conservation equation in
the fracture playing the role of a natural nonlinear boundary condition. The cohesive zone model
is used as a fracture propagation criterion.

The convergence of the numerical algorithm is checked by the comparison of the difference
between solutions on the successively refining grids. Also, the simulation results are compared
against the existing hydraulic fracture models, showing good agreement with numerical and
analytical solutions.

The model capabilities are demonstrated on the case of reservoir with two layers with a
permeability contrast. It is shown that fracture dynamics depends on the position of the
border between the layers relative to the injection point. The fracture breaks into the low-
permeable layer if the injection point is located near border between the layers. Otherwise, the
fracture propagates through the high-permeable layer. The described non-stationary dynamics
of the fracture grows demonstrates an importance of taking into account variability in physical
properties of the reservoir for the correct modelling of the fracture development.
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