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Abstract. The Z method is a novel technique that allows to calculate the melting temperature
of materials at di↵erent pressures from the microcanonical ensemble. In this work, we apply
this method to study the melting behavior of silica at high pressures, determining melting
temperatures and dynamical properties.

1. Introduction

Silica is one of the most studied materials. It makes up most of the composition of the Earth’s
lower mantle and is one of the basic components of rocky bodies in space. Knowing the properties
of silica at di↵erent pressures is not only important for physics, but for earth sciences and
astrophysics, where the wide variety of extrasolar planets discovered has put challenges in our
understanding of how planets are formed and how their interiors evolve. Models for planetary
interiors (see figure 1) are constrained by the bulk composition and distribution of chemical
species, and they need to include equations of state, such as phase transitions and melting
curves at high pressure, for perovskites, magnesiowustites and silicates, which are among the
most common rock-forming elements.

Figure 1. Left: interior of a gas-giant-like planet (Jupiter, Saturn). Right: interior of a
super-Earth-like planet (Earth, CoRoT-7b, Kepler 20b) [1, 2].

Since the discovery of stishovite in 1962 by Stishov and Popova, various experimental and
theoretical studies have characterized the so-called post-stishovite phases, including CaCl

2

, ↵-
PbO

2

, pyrite, and the recently predicted phases, cotunnite and Fe
2

P phases [3,4]. However, the
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melting curve of silica for the pressures corresponding to these phases is poorly constrained, or
simply not known. The latter point is of considerable interest for understanding the physical
evolution of planetary interiors, such as the process of di↵erentiation of terrestrial planets into
a dense metallic core surrounded by a rocky mantle, where the dynamics is driven by the
gravitational separation of a liquid phase.

Here we present a study of the melting behavior of silica at high pressures, obtained from
first principles molecular dynamics simulations using the Z method. We calculate the melting
point of three high pressure phases of silica (pyrite-, cotunnite-, and Fe

2

P-type SiO
2

) at di↵erent
pressures.

2. The Z method

The theoretical rationale of the Z method is that, in the NVE (microcanonical) ensemble, with
N the number of particles, V the volume, and E the energy of the system, there is a maximum
energy ELS that can be given to the crystalline system before it melts. Increasing the energy
beyond this point, at which the temperature is the limit of the superheating temperature TLS ,
the solid spontaneously melts, but due to the increase in potential energy, namely the latent
heat of fusion, the temperature decreases. The interesting fact is that the final temperature
after melting seems to coincide with the melting temperature Tm obtained from other methods.

Althought we still lack of a thermodynamical explanation for the Z method, it has been
empirically observed [5–23] that the method works, and the procedure is as follows: at a fixed
volume, the (E, T ) points from di↵erent simulations draw a ‘Z’ shape, as shown in figure 2. In
these Z–shaped curves the sharp inflection at the higher temperature corresponds to TLS and the
one at the lower temperature to Tm. Thus, knowledge of the lower inflection point for di↵erent
densities allows the determination of the melting curve for a particular range of pressures.

Figure 2. Schematic representation of the isochoric lines in Z-method: Mean temperature
versus total energy (left) and temperature versus pressure (right).

3. Ab initio molecular dynamics simulations

The first principles molecular dynamics (FPMD) simulations were preformed in the framework
of the Kohn–Sham density functional theory. We worked under the NVE-ensemble, using
the Born-Oppenheimer molecular dynamics (BOMD) method, as implemented in the VASP
code [24], employing PAW pseudopotential [25], and the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [26]. For the plane wave expasion of the wavefunctions, we used
a cuto↵ energy of 900 eV, and k-points convergence tests were performed in order to determine
the amount of k-points necessary to perform accurate calculations. The results of these tests
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yielded that the � point was enough for the sampling in all cases. Due to the high temperatures
explored, the fast dynamics of the ions needs a small time step, therefore a time step of �t = 0.2
fs was used in all calculations. A total of 5000 steps (1 ps) was used in the simulations, which
we discuss in section 4.2.

4. Results

4.1. Size dependance

Since the primitive cell of the Fe
2

P-type silica has 9 atoms [3], the most simple supercell (2⇥2⇥2)
contains 72 atoms, a size which might be still insuficient to lead to reliable results. Therefore, we
have carried out calculations comparing the predictions of the Z method using 72 and 243 atom
cells. In figure 3 we show the temperature as a function of the pressure for both systems. We
observe that only a slight di↵erence in the predictions is obtained in the Fe

2

P-type silica when
the size of the system is increased. At 1920 GPa, the mean temperature is slightly greater in

Figure 3. Size dependance of the calculations: isochore for silica in the Fe
2

P phase at V = 2.93
Å3/atom (⇢ = 11.33 g/cm3).

the system with 243 atoms, but this does not a↵ect the prediction of the melting temperature,
which corresponds to Tm = 15800 K in both cases. Therefore, we conclude that using a 72 atom
cell is enough for our purposes.

4.2. Simulation time dependance

As noticed by Alfè et al. [5], the waiting times before the transition to liquid takes place are
variable, and sometimes considerably long. Starting from the perfect crystal, and as we know
from energy equipartition, the initial temperature Ti drops rapidly about the half of its initial
value, and it then fluctuates about a value T

sol

, and if the energy is greater than ELS , it drops
again and fluctuates about a lower steady value T

liq

when the system melts. However, if Ti is
high enough, the system will not be able to remain in solid state and will melt spontaneously,
reaching T

liq

in the first steps of the simulation. The same happens with low initial temperatures,
for which T

sol

will never drop to T
liq

. Therefore, long simulation times are not needed to get a
rough shape of the Z curve and, therefore, a good estimation for Tm.
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The evolution of temperature as a function of time in a 96-atom cell of silica in the pyrite phase
is shown in figure 4. The initial velocities are randomly assigned, so that they correspond to the
a given temperature, leading to di↵erent values of instantaneous temperatures in the simulation
but the same mean temperature. Homogeneous melting occures for the sample initiated at 26000
K during the first 200 steps (40 fs), while the structure remains as a superheated solid when
initiated at 23000 K, where the crystal lattice sites are still identifiable (figure 4, left). The mean
temperatures of the superheated solid and the final liquid are T

sol

= 9821 K and T
liq

= 8815 K,
while the mean pressures are P

sol

= 375 GPa and P
liq

= 391 GPa.

(a) T
0

= 23000 K. hT i = T
sol

= 9821 K (Solid branch) (b) T
0

= 26000 K. hT i = T
liq

= 8815 K (Liquid branch)

Figure 4. Evolution of temperature as a function of time in four independent simulation runs
for a volume V = 5.06 Å3/atom (⇢ = 6.58 g/cm3) of the pyrite structure: two initiated at 23000
K (left) and two initiated at 26000 K (right).

4.3. Mean Squared Displacement

In figure 5 we show an isochore of pyrite-like silica, where we observe a temperature drop around
P ⇠ 380 GPa. The highest temperature in the solid branch, 9821 K, corresponds to a simulation
initiated at 23000 K (the same shown in figure 4, left), which drops to 8815 K when initiated at
26000 K, which we associate to melting. We analyzed the mean squared displacement (MSD)
for all simulations in the isochore, which are shown in figure 6. We observe that there is a
clear di↵erence in behavior of atoms when the sample is initiated at T

0

= 26000 K, respect
to lower initial temperatures. Both Si and O show a di↵usive behavior, which is steeper for
highest temperature, an evidence that the sample is already molten. However, when the sample
is initiated at T

0

= 23000 K, only the oxigen atoms di↵use, with a slope in the MSD curve
that is very small. The MSD shows that superheated solids present this anomalous behavior:
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Figure 5. Isochoric of the pyrite-type silica. V = 5.06 Å3/atom (⇢ = 6.58 g/cm3). The melting
point corresponds to a simulation intiated at T

0

= 26000 K.

Figure 6. Mean squared displacement of Si and O atoms in the pyrite-type silica crystal as the
initial temperature T

0

is increased.

a non-flat slope MSD curve or an almost-flat zero-slope MSD that adquires a non-zero slope,
which sometimes makes it di�cult to di↵erentiate between a solid and a liquid.

4.4. Melting points

Using the Z method and the MSD analysis, we have obtained some high pressure melting
temperatures for silica, which are depicted in table 1.

5. Conclusions

By using the Z method, we have determined some melting temperatures of silica for pressures
higher than 300 GPa. These findings have considerable importance for the field of planetary
science, since there still are no constraints for the solid–liquid phase diagram of silica at pressures
concerning the interior of massive rocky planets (greater than 1000 GPa), which enable us to
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Table 1. Melting temperatures (Tm) of silica in di↵erent crystalline phases at high pressures.
Structure Tm (K) P (GPa) V /atom (Å3)
Pyrite 8815 391 5.06

Cotunnite 12886 1273 3.43
Fe

2

P 16922 1946 2.93

build more precise models for their interiors. However, further research must be done in order
to constrain the melting points in the Z method, since the precision of the temperature obtained
depends on the amount of simulations performed close to the TLS–Tm drop, and the waiting
times considered to determine if the system has reached the final equilibrium temperature.
Further studies should consider the di↵erent structures of silica and determine whether how the
melting temperature predicted by the Z method depends on the initial structure used.
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