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Abstract. When heated and/or compressed, strongly interacting matter exhibits a rich phase
structure. In this talk, I will concentrate on its behavior under variations of the temperature,
which is most relevant for phenomenological applications such as in cosmology, heavy-ion
collisions, and astrophysics.

In particular, effective field theory methods can be used to combine lattice and continuum
calculations, in order to obtain high-precision results for the relevant thermodynamic quantities
such as the QCD pressure and equation of state. 1 will discuss the current status of
this systematic approach to QCD thermodynamics, and point out the remaining (technical)
problems.

1. Introduction

Quantum Chromodynamics (QCD) is the theory that describes the strong interactions in nature,
which binds quarks into hadrons, such as protons or pions. Due to its nature of being a non-
Abelian gauge theory, its equations are however extremely difficult to solve. While a large
body of experimental information on details of the hadron spectrum exists [1], first-principle
theoretical postdictions of these properties are rather sparse.

In the quest to check the theory of QCD versus its observed manifestations, we can identify
three main types of approaches. First, one might just solve its equations. This is the realm
of lattice QCD, where large-scale computer simulations are used to numerically approximate
observables such as the hadron mass spectrum. As a result of worldwide efforts, multi-million-
dollar investments, teraflop speeds, hardware development as well as algorithmic advances, the
punchline of this line of investigation is that, starting from the (fractionally charged, partonic
quark- and gluon-) QCD degrees of freedom, one indeed postdicts exactly the observed (integer-
charged) low-lying hadron spectrum (see, e.g. [2]).

A second line of approaches centers around considering phenomenological models that are in
some sense ‘close’ to QCD, but mathematically simpler to treat. Typical modifications include a
change of space-time dimension, different symmetry groups, or modified particle content of the
theory. These models are most successful when applied to specific narrow problems, but mostly
lack generality.

Third, one might consider ’extreme’ circumstances in which the QCD equations simplify, or
at least allow for an application of systematically improvable approximation methods such as
weak-coupling expansions. Such ’extreme’ conditions can be realized e.g. when some parameters
assume extreme values, such as the very high energies realized at particle colliders such as
currently at the Large Hadron Collider at CERN. Indeed, the higher the collision energy, the
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cleaner the underlying interaction vertices can be seen, such that from the jet structure of the
events one can map out precisely the underlying details of the theory. Of course, nowadays
QCD contributions are not signals, but constitute (large and therefore important) background
in searches for new particles.

Another such ’extreme’ regime of QCD can be reached by heating the system up to very
large temperatures T', where fundamental questions such as confinement and chiral symmetry
breaking can be addressed. This is the realm of thermal field theory [3], in which problems
that are phenomenologically relevant for e.g. cosmology (such as dark matter relic abundance),
heavy-ion collisions (such as hydrodynamic expansion af a plasma) and for astrophysics (such
as the properties of compact stars) are studied. Furthermore, due to asymptotic freedom, the
high-temperature limit of QCD turns out to be tractable with analytic methods, namely weak-
coupling expansions. In this limit, while staying strictly within QCD (as opposed to modelling
some of its behavior), we hence gain the possibility of systematic improvements of theoretical
approximations, whenever they are needed.

The thermodynamic properties QCD, such as certain features of its equilibrium phase
diagram, can be studied in lattice Monte-Carlo simulations. One of the key results of thermal
lattice QCD is the determination of the deconfinement temperature 7, at vanishing baryon
density. These results basically confirm the expected transition from a hadron gas at low
temperatures to a quark-gluon plasma above T, tracking the liberation of degrees of freedom
via the QCD pressure, and confirming an approach to the asymptotic limit of an ideal gas, see
Fig. 1.
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Figure 1. Lattice results for the scaled QCD pressure, for different flavor content of the theory
[4]. The small arrows denote the respective values for an ideal (Stefan-Boltzmann) gas.

Further explorations of features of the equilibrium phase diagram at various values of
temperatures as well as baryon-chemical potentials g turn out to be more difficult, and typically
involve some degree of modeling. Of particular interest are the equation of state (EoS), phase
transition lines, their respective order, and locations of critical points, as well as medium
properties such as spectral functions or correlation lengths. These questions are being actively
pursued in a worldwide effort in order to obtain information relevant for early-universe cosmology
(high T, low p), heavy-ion physics (intermediate 7" and p) as well as astrophysics (low T,
intermediate p).
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As has already been mentioned above, while hot QCD is a strongly coupled system near T,
where lattice simulations are needed, at very high temperature asymptotic freedom guarantees
the gauge coupling g to become small, such that weak-coupling approaches can be used. In
particular, effective field theory methods turn out to be most powerful in order to combine
lattice and continuum calculations [5, 6], in order to obtain high-precision results for the relevant
thermodynamic quantities such as the QCD pressure and equation of state [7]. These methods
alleviate the notorious infrared problem of finite-temperature field theory [8], to an extent that
higher orders in the weak-coupling expansion can now be systematically included. I will discuss
some key features of this systematic approach to QCD thermodynamics using the best of both
— lattice and continuum — approaches, and point out the remaining (technical) problems [9].

2. Effective field theory approach

As becomes apparent from the lattice data of Fig. 1, the task is to explain the deviation of
the value of the QCD pressure of about 20% at T ~ 47T, from its ideal value, realized in the
theoretical limit T — oo. In the imaginary-time path integral formalism at finite temperature,
the pressure can be straightforwardly computed as the logarithm of the partition function in the
thermodynamic limit,

Voo V

p(T) = hm—ln/D ,@D?/) exp /h/ dT/d3 2y CD)- (1)

Due to the above-mentioned infrared problems, the loop expansion of p(T') in the gauge
coupling g turns out to be non-trivial, since it contains odd powers of the coupling and even
logarithms thereof. After pioneering work in the seventies and eighties [10, 11, 12], the root
cause of this non-analytic (in o, = ¢g2/4m) behavior has been well understood as coming from
the dynamically generated scales in the thermal system: intercations make hot QCD a multi-scale
system, where the relevant momentum scales |k| ~ 7T, |k| ~ ¢T and |k| ~ ¢g*T are called hard,
soft and ultrasoft, respectively. At large temperatures, the gauge coupling is small and hence
these three scales are well separated, allowing for a clean effective theory setup that factorizes
the partition function, such that the pressure can be re-written as the sum of contributions from
these three scales [13],

pPQcCcD (T) = phard(T) + Psoft (T) + Pultrasoft (T) . (2)

Physics at those three different energy scales is governed by 4-dimensional (4d) thermal QCD,
by a 3d adjoint Higgs model, and by 3d pure Yang-Mills theory, respectively. Soft and ultrasoft
effects hence originate from 3-dimensional theories, a phenomenon known as dimensional
reduction, as can be easily understood from the fact that long-range (small momentum) physics
does not see the compact timelike dimension. As is common practice in effective field theory,
couplings of the effective theory are related to the parameters of the original one (in this case T'
and g) through matching computations. It turns out that, after the matching has been done in
the weak-coupling sense, the three parts of the pressure parametically start at different orders
in the dimensionless 4d gauge coupling g,

Phacd(T) ~ T A4+ ¢*+g* +¢°+..)), (3)
psoit(T) ~ THg*+g* +d°+d°+...), (4)
Dultrasoft (T) ~ T4(g6 + .. ) . (5)

Now, as is well-known from effective theories, whenever a new physical scale enters a problem,
one typically meets large logarithms (of the ratio of matching scales). Therefore, one might call
the sum of the expansions shown above the 'physical leading order’ of the pressure. Indeed, it is
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known that whenever one truncates the series before the order g%, the series does not show signs
of convergence at intermediate temperatures [?], a telltale sign that these large logarithms are
missing. Only at parametric order g%, for the first time contributions from all physical energy
scales have entered, giving a true leading-order approximation.

3. Current status

Of all the coefficients shown in Egs. (3-5), only the g% term of Eq. (3) remains unknown to
date. The longest-distance input, puitrasoft; i & non-perturbative contribution that has been
determined with a clean lattice measurement [15] and matched from the lattice to the continuum
(MS) scheme via numerical stochastic perturbation theory [16]. This alleviates the infrared
problem mentioned above.

Contributions to peofs and pharg are purely perturbative, the g% coefficients entailing four-loop
diagrams that are relatively straightforward to evaluate in the 3d theory [17], but much more
involved in the 4d one [18]. Figure 2 shows typical diagrams at this level, all being of vacuum
type. The open problem to be tackled is to develop a method that allows to systematically
solve the large number of four-loop sum-integrals that appear in the short-distance piece ppard-
Once this difficult but conceptionally clear perturbative contribution has been fixed and hence a
result for the physical leading order’ of the pressure is available, it would of course be valuable
to check convergence of the series by evaluating the next-to-leading (NLO, ¢g”) order. Somewhat
surprisingly, this step would not represent a huge technical complication, as it originates from
the 3d theory only, allowing for an application of the full power of automated Feynman integral
reduction algorithms (albeit at the five-loop level) that have been and are currently being
developed for zero-temperature applications such as collider physics.

Figure 2. Some Feynman diagrams contributing to the four-loop pressure. Wiggly /dotted lines
denote gluons/ghosts, respectively.

While working on the hard open problem of evaluating the required four-loop sum-integrals,
one might be tempted to already show some results, in order to connect to phenomenology.
To this end, as an attempt to strive for the currently best possible description of the pure-glue
sector of hot QCD, the single unknown ¢° coefficient can be fixed by matching to available lattice
data at intermediate temperatures T' ~ 3 — 5T, [7]. The result is shown in Fig. 3, and can be
argued to show a friendly functional behavior, smoothly connecting low-temperature data with
the weak-coupling expansion at high temperatures.

Once the gluonic sector is under control, the effective theory framework allows for
straightforward inclusion of fermions, since their effects are contained in the matching
coefficients. To obtain an estimate of the equation of state (EoS) with physical quark masses,
one can follow the strategy of unquenching: starting from the Ny = 0 results of Fig. 3, which
correspond to mg = 0o, one lowers Ny of them to their physical masses mg pnys [7]. Schematically,

the NLO result is p(Ny = 0) x [C([):gfgcfiﬁ\(]{\;?zg;i) which, after going to physical units of energy

by expressing Agrg in units of MeV with the help of matching to a hadron resonance gas at low
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temperature, allows to plot the dimensionless ratios of Fig. 4. Let us mention that the deviation
of the (dimensionless) EoS from a third, (3 — w(T)), is often called the ’trace anomaly’ or
‘interaction measure’. One observes significant structure at tempreatures 7' ~ 100 — 400 MeV,
a feature that does not come as a surprise since close to a second-order phase transition, one
would expect e.g. the sound speed to scale with a critical exponent, ¢(T") ~ (T — T.) 7.
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Figure 3. Interpolating curve (solid line) . )
for the QCD pressure at Ny = 0 [7]. In the Figure 4. The equation-of-state parameter

T
perturbative curve (grey band) the unknown w = iE and the speed of sound squared

g% constant has been adjusted to match lattice 2= gg% for QCD at Ny =4 [7].
data [4] at T' ~ 4T..
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4. Conclusions

In summary, we have seen that phenomenologically relevant thermodynamic quantities of QCD,
such as the pressure, can be determined to high accuracy with a mix of two main approaches:
numerically at temperatures around 200 MeV, in the neighborhood of the critical one, and
analytically at T > T,. The latter approach involves multi-loop weak-coupling expansions
and is efficiently organized in the framework of effective field theories, allowing for systematic
improvements.

The relevant three-dimensional effective theories are interesting in their own right, opening
up tremendous opportunities: fermions can be treated completely analytically, in contrast
to the large problems they pose in the lattice approach. Furthermore, universality and
superrenormalizability make these 3d theories an ideal playground for the development multi-
loop methods.

Regarding the QCD pressure, the current status is that its 'physical leading order’, in the
sense defined above, remains unknown. A mild open problem being a matching of lattice- and
continuum results for general N., the more difficult task to be completed is the evaluation of
a large number of four-loop sum-integrals. However, the pressure shows a friendly functional
behavior when the single yet-unknown coefficient is fitted.
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