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Postal 70-543, México Distrito Federal 04510, Mexico.
2 Instituto de F́ısica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
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Abstract.

We compute the critical temperature for the chiral transition in the background of a magnetic
field in the linear sigma model, including the quark contribution and the thermo-magnetic effects
induced on the coupling constants at one loop level. For the analysis, we go beyond mean
field aproximation, by taking one loop thermo-magnetic corrections to the couplings as well as
plasma screening effects for the boson’s masses, expressed through the ring diagrams. We found
inverse magnetic catalysis, i.e. a decreasing of the critical chiral temperature as function of the
intensity of the magnetic field, which seems to be in agreement with recent results from the
lattice community.

1. Introduction

In recent years there has been an increasing interest in studying the QCD phase diagram
in the presence of a magnetic field. Particularly, the effect of the magnetic field on
the critical temperature for chiral phase transition, has been studied in different effective
models [1, 2, 3, 4, 5, 6, 7] as well as in lattice QCD where initially it has been found that
magnetic catalysis takes place, i.e. that the critical temperature for chiral phase transition
becomes higher in the presence of a magnetic field [8, 9]. However, recent improved lattice
calculations have found the opposite behavior [10, 11, 12].

In this work, we studied the sigma model with quarks, finding inverse magnetic catalysis
in agreement with the latest lattice results. The main idea was to go beyond mean field
approximation, by taking thermo-magnetic corrections to the couplings. In this way we found
that the boson’s coupling decreases with the magnetic field which is a substantial ingredient
in order to find inverse magnetic catalysis. The idea of correcting the vertices has also been
implemented in QCD [13], where the thermal and magnetic corrections to the quark-gluon vertex
have been calculated in the Hard Thermal Loop(HTL) approximation. From the quark-gluon
vertex we can obtain the dependence of the QCD coupling with the magnetic field. The result
shows that the coupling decreases as function of the intensity of the magnetic field. The reader
should go to the original reference [14] for a complete description of the technical details.
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2. Efective Potential

The model is given by the Lagrangian

L =
1

2
(∂µσ)

2 +
1

2
(Dµ~π)

2 +
µ2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2

+ iψ̄γµDµψ − gψ̄(σ + iγ5~τ · ~π)ψ, (1)

where ψ is an SU(2) isospin doublet, ~π = (π1, π2, π3) is an isospin triplet and σ is an isospin
singlet, with

Dµ = ∂µ + iqAµ, (2)

is the covariant derivative. Aµ is the vector potential corresponding to an external magnetic
field directed along the ẑ axis,

Aµ =
B

2
(0,−y, x, 0), (3)

and q is the particle’s electric charge. Aµ satisfies the gauge condition ∂µA
µ = 0. Since A3 = 0,

the gauge field only couples to the charged pion combinations, namely

π± =
1√
2
(π1 ∓ iπ2) . (4)

The neutral pion is taken as the third component of the pion isovector, π0 = π3. The gauge field
is taken as classical and thus we do not consider loops involving the propagator of the gauge
field in internal lines. The squared mass parameter µ2 and the self-coupling λ and g are taken
to be positive.

To allow for an spontaneous breaking of symmetry, we let the σ field to develop a vacuum
expectation value v

σ → σ + v, (5)

which can later be taken as the order parameter of the theory. After this shift, the Lagrangian
can be rewritten as

L = −1

2
[σ(∂µ + iqAµ)

2σ]− 1

2

(
3λv2 − µ2

)
σ2

− 1

2
[~π(∂µ + iqAµ)

2~π]− 1

2

(
λv2 − µ2

)
~π2 +

µ2

2
v2

− λ

4
v4 + iψ̄γµDµψ − gvψ̄ψ + Lb

I + Lf
I , (6)

where Lb
I and Lf

I are given by

Lb
I = −λ

4

[
(σ2 + (π0)2)2

+ 4π+π−(σ2 + (π0)2 + π+π−)
]
,

Lf
I = −gψ̄(σ + iγ5~τ · ~π)ψ, (7)

and represent the Lagrangian describing the interactions among the fields σ, ~π and ψ, after
symmetry breaking. From Eq. (6) we see that the σ, the three pions and the quarks have masses
given by

m2
σ = 3λv2 − µ2,

m2
π = λv2 − µ2,

mf = gv, (8)
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respectively.
Using Schwinger’s proper-time method, the expression for the one-loop effective potential for

one boson field with squared mass m2
b and absolute value of its charge qb at finite temperature

T in the presence of a constant magnetic field can be written as

V
(1)
b =

T

2

∑

n

∫
dm2

b

∫
d3k

(2π)3

∫ ∞

0

ds

cosh(qbBs)

× e
−s(ω2

n+k23+k2
⊥

tanh(qbBs)

qbBs
+m2

b
)
, (9)

where ωn = 2nπT are boson Matsubara frequencies. Similarly, the expression for the one-loop
effective potential for one fermion field with mass mf and absolute value of its charge qf at finite
temperature T in the presence of a constant magnetic field can be written as

V
(1)
f = −

∑

r=±1

T
∑

n

∫
dm2

f

∫
d3k

(2π)3

∫ ∞

0

ds

cosh(qfBs)

× e
−s(ω̃2

n+k23+k2
⊥

tanh(qfBs)

qfBs
+m2

f
+rqfB)

, (10)

where ω̃n = (2n+1)πT are fermion Matsubara frequencies. The sum over the index r corresponds
to the two possible spin orientations along the magnetic field direction.

Including the v-independent terms, choosing the renormalization scale as µ̃ = e−1/2µ and
after mass and charge renormalization, it has been shown in Ref. [15] that the thermo-magnetic
effective potential in the small to intermediate field regime, in a high temperature expansion
can be written as

V (eff) = −µ
2

2
v2 +

λ

4
v4 +

∑

i=σ,π0

{
m4

i

64π2

[
ln

(
(4πT )2

2µ2

)
− 2γE + 1

]

− π2T 4

90
+
m2

iT
2

24
− T

12π
(m2

i +Π)3/2
}
+

∑

i=π+,π−

{
m4

i

64π2

[
ln

(
(4πT )2

2µ2

)
− 2γE + 1

]

− π2T 4

90
+
m2

iT
2

24
+
T (2qB)3/2

8π
ζ

(
−1

2
,
1

2
+
m2

i +Π

2qB

)

− (qB)2

192π2

[
ln

(
(4πT )2

2µ2

)
− 2γE + 1 + ζ(3)

(
mi

2πT

)2

− 3

4
ζ(5)

(
mi

2πT

)4
]}

−
∑

f=u,d

{
m4

f

16π2

[
ln

(
(πT )2

2µ2

)
− 2γE + 1

]
+

7π2T 4

180
−
m2

fT
2

12

+
(qfB)2

24π2

[
ln

(
(πT )2

2µ2

)
− 2γE + 1

]}
, (11)

where q is the absolute value of the charged pions’ charge (q = 1), qu = 2/3, qd = 1/3 are
the absolute values of the u and d quarks, respectively and γE is Euler’s gamma. Though we
take the quark masses as equal, the notation emphasizes that the effective potential is evaluated
accounting for the different quark charges. We have introduced the leading temperature plasma
screening effects for the boson’s mass squared, encoded in the boson’s self-energy Π. For the
Hurwitz zeta function ζ(−1/2, z) in Eq. (11) to be real, we need that

−µ2 +Π > qB, (12)
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(a) (b) (c)

Figure 1. Feynman diagrams contributing to the one loop bosons’ self-energies. The dashed
line denotes the charged pion, the continuous line is the sigma, the double line represents the
neutral pion and the continuous line with arrows represents the fermions.

condition that comes from requiring that the second argument of the Hurwitz zeta function
satisfies z > 0, even for the lowest value of m2

b which is obtained for v = 0. Furthermore, for
the large T expansion to be valid, we also require that

qB/T 2 < 1. (13)

The diagrams representing the bosons’ self-energies are depicted in Fig. 1. Each column
corresponds to the diagrams contributing to the self-energy of a given boson. The total self-
energy for any boson is identical to the other’s and thus we concentrate on computing the
diagrams in column (a). The contribution from the individual diagrams require of the expressions
[hereby capital letters are used to denote four-momenta in Eucledian space, e.g. K ≡ (ωn,k)]

Πa1(m
2
σ) = λT

∑

n

∫
d3k

(2π)3
D(K;m2

σ),

Πa2(m
2
π0) = λT

∑

n

∫
d3k

(2π)3
D(K;m2

π0)

Πa3(m
2
π±) = λT

∑

n

∫
d3k

(2π)3
DB(K;m2

π±),

Πa4(P ;mf ) = −Nfg
2T
∑

n

∫
d3k

(2π)3

× Tr SB(K;mf )SB(P −K;mf ), (14)

where Nf is the number of fermions and the corresponding propagators are given by

D(K;m2
i ) =

1

K2 +m2
i

,

DB(K;m2
i ) =

∫ ∞

0
ds
e
−s(ω2

n+k23+k2
⊥

tanh(qBs)
qBs

+m2
i
)

cosh(qBs)
,
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SB(K;mf ) =

∫ ∞

0
ds
e
−s(ω̃2

n+k23+k2
⊥

tanh(qfBs)

qfBs
+m2

f
)

cosh(qfBs)

×
[
(cosh(qfBs)− iγ1γ2 sinh(qfBs))(mf − 6k‖)−

6k⊥
cosh(qfBs)

]
, (15)

and for the charged particle propagators we have used Schwinger’s proper-time representation.
For the computation of Πa3 we work in the infrared limit, namely, P = (0,p → 0) and with
the hierarchy of scales qB,m2

i < T 2. It has been shown [16] that this limit can be formally
implemented by straightforward setting P = 0 in the third of Eqs. (14). The leading contribution
at high temperature from each of these diagram is

Πa1(m
2
σ) = λ

T 2

12

Πa2(m
2
π0) = λ

T 2

12

Πa3(m
2
π±) = λ

T 2

12

Πa4(0;mf ) = Nfg
2T

2

6
, (16)

and therefore, considering the permutation factors, the total self-energy is given by

Π = 3Πa1(m
2
σ) + Πa2(m

2
π0) + 2Πa3(m

2
π±) + Πa4(0;mf )

= λ
T 2

2
+Nfg

2T
2

6
. (17)

3. One loop thermo-magnetic couplings and critical temperature

Let us now compute the one-loop correction to the coupling λ, including thermal and magnetic
effects. Figure 2 shows the Feynman diagrams that contribute to this correction. Columns (a),
(b), (c), (d), (e) and (f) contribute to the correction to the σ4, (π0)4, (π+)2(π−)2, σ2π+π−,
(π0)2π+π− and σ2(π0)2 terms of the interaction Lagrangian in Eq. (7), respectively

(a) (b) (c) (d) (e) (f)

Figure 2. One-loop Feynman diagrams that contribute to the thermal and magnetic correction
to the coupling λ. The dashed line denotes the charged pion, the continuous line is the sigma
and the double line represents the neutral pion.

Once again we work in the infrared limit, namely, Pi = (0,p → 0) and with the hierarchy of
scales where qB,m2

i < T 2. Considering the permutation factors and the contribution from the

XIX Chilean Physics Symposium 2014 IOP Publishing
Journal of Physics: Conference Series 720 (2016) 012026 doi:10.1088/1742-6596/720/1/012026

5



(a) (b) (c)

Figure 3. One-loop Feynman diagrams that contribute to the thermal and magnetic correction
to the coupling g. The dashed line denotes the charged pion, the continuous line is the sigma,
the double line represents the neutral pion and the continuous line with arrows represents the
quarks.

s, t and u-channels, the correction to the self-coupling λ to one-loop order is given by

λeff = λ
[
1 + 24λ

(
9I(0;m2

σ) + I(0;m2
π) + 4J(0;m2

π)
)]
,

(18)

where

I(0;m2
i ) =

T

8π

1

(m2
i +Π)1/2

− 1

16π2

[
ln

(
(4πT )2

2µ2

)
+ 1− 2γE + ζ(3)




√
m2

i +Π

2πT




2
]
,(19)

Jn 6=0(0;m
2
i ) = − 1

16π2

[
ln

(
(4πT )2

2µ2

)
+ 1− 2γE + ζ(3)




√
m2

i +Π

2πT




2
]

− (qB)2

1024π6T 4
ζ(5). (20)

Note that λeff depends on v through the dependence on the boson masses. Let us furthermore
take the approximation where we evaluate λeff at v = 0. The rationale is that we are pursuing the
effect on the critical temperature which is the temperature where the curvature of the effective
potential at v = 0 vanishes.

We now turn to the calculation of the thermo-magnetic correction of the coupling g. Figure 3
shows the Feynman diagrams that contribute to this correction. We are interested in computing
an effective value for this coupling, geff, also for v = 0, in the same manner we did for λeff.
Columns (a), (b) and (c) contribute to the correction to the quark-σ, quark-π0 and quark-π±

terms of the interaction Lagrangian of Eq. (7), respectively. Therefore the correction to g at
one-loop order is given by

geff = g[1 + g2L(0, 0)], (21)
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where

L(0, 0) =
g3

8π2

[
−2γE + 1− ln

(
T 2π2

2µ2

)
− 7

(
m2

π

8π2T 2

)
ζ(3) + 31

(
m2

π

8π2T 2

)2

ζ(5)

+
3410

9

(qB)2

(4πT )4
ζ(5)

]
. (22)

In order to use a set of values for the couplings λ and g appropriate for the description of the phase
transition note that the curvature of the effective potential vanishes for v = 0. Since the boson
thermal masses are proportional to this curvature, they also vanish at v = 0. This observation
provides a condition to obtain a relation between the model parameters at Tc that can be
supplemented with information from the physical masses of the pion and sigma in vacuum [22].

0.0 0.5 1.0 1.5 2.0

0.96

0.97

0.98

0.99

1.00

b

t c
b �

t c
b=

0

Λeff ,geffHt,bL Λ=0.225

g=0.8

g=0.6

g=0.4

g=0.2

Figure 4. Color on-line. Effect of the full thermo-magnetic dependence of couplings on the
critical temperature for a fixed value of the tree level λ = 0.225 and different values of the tree
level g as a function of b = qB/µ2. In all cases the critical temperature is a decreasing function
of b.

Let us now study the effect that the thermo-magnetic corrections to the couplings have on
the critical temperature. We first look at the cases where we set the couplings to their tree level
values and where only thermal effects are included. Figure 4 shows the critical temperature
for the case where we consider the full thermo-magnetic dependence of the couplings, obtained
from setting the second derivative of Eq. (11) equal to zero at v = 0, normalized to the critical
temperature for vanishing magnetic field. Figure 4 shows the case when we set the tree-level
coupling λ to a fixed value and vary the tree-level coupling g.

4. Conclusions

In summary, we have shown that when including the one-loop thermo-magnetic effects for the
couplings in the linear sigma model with fermions interacting with an external magnetic field,
the critical temperature for the chiral transition is a decreasing function of the field strength.
This behavior is a direct consequence of the decrease of the boson self-coupling with the field
strength. The effect of the fermions is marginal and the main contribution comes from the
charged pions. We emphasize that the thermo-magnetic dependence of the couplings has been
computed –as opposed to assumed– within the model itself.
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