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Abstract. We discuss several integrability properties of a coupled KdV system. We obtain
a new generalization of the already known static solutions for the system. We then consider
the supersymmetric extension of the coupled KdV system, it is a new integrable system. We
show that for particular Grassmann algebras the system is the limit of a Clifford algebra valued
system with nice stability properties. We briefly discuss the hamiltonian structures of this
supersymmetric integrable system.

1. Introduction
The Korteweg-de Vries (KdV) equation has relevant applications in low energy physics as well
as in high energy physics. Several extensions of KdV have been proposed. Some of them are
the coupled KdV systems, the supersymmetric KdV equation and operatorial extensions.

Recently [1] we introduced a parametric coupled KdV system which includes the complex
version of KdV equation for a particular value of the parameter as well as one of the Hirota-
Satsuma coupled systems. We found a Bäcklund transformation, the Gardner transformation
and we showed the permutability theorem for the system. In particular we found an
infinite family of multisolitonic and periodic solutions for the system. On the other side a
supersymmetric extension of KdV equation has been considered in the literature. Although it
has infinite conserved quantities as the KdV equation, only one local hamiltonian structure has
been found for it in distinction to the KdV case which is bihamiltonian.

In this work we present some new interesting properties about the solutions to the parametric
coupled KdV system and we show also that for particular Grassmann algebras, which are
the basic algebraic structures to define the supersymmetric extensions of the KdV equation,
the supersymmetric system is bihamiltonian, in the sense we will explain in this work. In
particular, one of the Hirota-Satsuma coupled systems is contained in a supersymmetric system.
Consequently, this supersymmetric system has all the integrability properties shown in [1].

2. The parametric coupled KdV system and some of its relevant properties
The parametric coupled KdV system is given by

ut + uux + uxxx + λvvx = 0 (1)
vt + uxv + vxu + vxxx = 0, (2)
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where λ is a real parameter and u, v are rapidly decreasing real valued functions depending on
the temporal and spatial variables t and x respectively. The system contains, for λ = −1, the
complex version of KdV and for λ = 0 includes the ninth Hirota-Satsuma system given in [2]
(after a suitable change of the variables). For the case λ = 1 the system decouples in to two
KdV equations, in terms of u ± v respectively; for the other values of the parameter λ (λ 6= 0)
a simple change in the variable v reduces it to λ = ±1.

The system defined by (1) and (2) has applications as a physics model in a two-layer liquid,
see [3], and also has solitonic solutions, obtained using the Hirota approach [4].

In [1] it was proven the following
Lemma 1 Let r, s ∈ C∞

↓ be a solution of the following ε-parameter partial differential equations
(called the Gardner system)

rt + rxxx + rrx + λssx −
1
6
ε2

[(
r2 + λs2

)
rx + 2λrssx

]
= 0

st + sxxx + rsx + srx −
1
6
ε2

[(
r2 + λs2

)
sx + 2rsrx

]
= 0.

Then u, v ∈ C∞
↓ defined through the relations (called the Gardner transformation)

u = r + εrx −
1
6
ε2

(
r2 + λs2

)
v = s + εsx −

1
3
ε2rs

are solutions of the system (1),(2).
As a direct consequence of lemma 1 we have that the system (1),(2) has infinite polynomial
conserved quantities in the fields u, v and its spatial derivatives (making the system integrable
in this sense for every value of λ) and they are explicitly obtained from the first two conserved
quantities of the Gardner system. The first few of them are∫ +∞

−∞
udx ,

∫ +∞

−∞
vdx,∫ +∞

−∞

(
u2 + λv2

)
dx ,

∫ +∞

−∞
uvdx,∫ +∞

−∞

(
1
3
u3 + λuv2 − λ(vx)2 − (ux)2

)
dx ,

∫ +∞

−∞

(
1
2
u2v − uxvx +

1
6
λv3

)
dx.

We proposed in [1] for the system (1), (2) the following Bäcklund transformation. If (w, y)
and (w′, y′), where wx = u, w′

x = u′ and yx = v, y′x = v′ satisfy the following equations (Bäcklund
transformation)

wx + w′
x = 2η − 1

12
(w − w′)2 − λ

12
(y − y′)2, (3)

wt + w′
t =

1
6
(w − w′)(wxx − w′

xx) +
λ

6
(y − y′)(yxx − y′xx)− 1

3
w2

x − (4)

− 1
3
w′

x
2 − 1

3
wxw′

x −
λ

3
y2

x −
λ

3
y′x

2 − λ

3
yxy′x,

yx + y′x = 2µ− 1
6
(w − w′)(y − y′), (5)

yt + y′t =
1
6
(w − w′)(y − y′)xx +

1
6
(w − w′)xx(y − y′)− (6)

−
(

2
3
wxyx +

2
3
w′

xy′x +
1
3
wxy′x +

1
3
w′

xyx

)
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on an open set Ω ⊂ R2 and
(w − w′)2 − λ(y − y′)2 6= 0

on Ω, then (w, y) and (w′, y′) are two (different) solutions of the system

Q1(w, y) ≡ wt +
1
2
(wx)2 + wxxx +

1
2
λ(yx)2 = 0 (7)

Q2(w, y) ≡ yt + wxyx + yxxx = 0, (8)

and consequently wx = u, yx = v, w′
x = u′, y′x = v′ are solutions of the original system (1),

(2) over the corresponding set in the plane. We observe that (7), (8) is essentially our original
system.

It was also proven in [1] the following

Theorem 1 (Permutability theorem) Let w12, y12 be the solution of (7),(8) obtained from the
Bäcklund transformation following the sequence

(w0, y0) →η1 (w1, y1) →η2 (w12, y12)

and (w21, y21) the solution following the sequence

(w0, y0) →η2 (w2, y2) →η1 (w21, y21).

Then w12 = w21, y12 = y21 and

w12 − w0 =
24(η1 − η2)(w1 − w2)

(w1 − w2)
2 − λ(y1 − y2)

2

y12 − y0 =
−24(η1 − η2)(y1 − y2)

(w1 − w2)
2 − λ(y1 − y2)

2 .

We notice that the denominator in the above formulas is the same expression which appears in
the assumptions given for the Bäcklund transformation. This condition is necessary in order to
have regular solutions. In the case λ = −1, the denominator becomes

(w1 − w2)
2 + (y1 − y2)

2. (9)

3. On the explicit solutions from the Bäcklund transformation
In [1] the following set of solutions for (1), (2) were found, using the Bäcklund transformation :

for any η > 0 and λ = −1

u(x, t) = 4η

[
1− 3C

ηA cosh (ax + b)
]

[
cosh (ax + b)− 3

η
C
A

]2 , v(x, t) = − ρ

A
a

sinh (ax + b)[
cosh (ax + b)− 3

η
C
A

]2 , (10)

for any η < 0 and λ = −1

u =
−4|η|

(
1 + 3Cε

|η|Â
cos (ax + b)

)
(
ε cos (ax + b) + 3C

|η|Â

)2 , v =
ρa

Â

ε sin (ax + b)(
ε cos (ax + b) + 3C

|η|Â

)2 (11)
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and finally for η = 0 and λ = −1 (and for any value of the parameters C,H and ρ 6= 0)

u = wx =
C2 ρ2

12 − 12C4(x + H)2[( ρ
12

)2 + C2(x + H)2
]2 , v = yx =

−2C3ρ (x + H)[( ρ
12

)2 + C2(x + H)2
]2 . (12)

The solutions are solitonic, periodic and static (independent of t) respectively. For the details
about the parameters involved in the solutions see [1].

We can also use the expressions given for the permutability theorem and the explicit formulas
for w12, y12 to generate new solutions from old ones with respect our original system (1), (2), in
particular new multisolitonic solutions.

In distinction with what occurs with the Bäcklund transformation for the KdV equation, we
can use directly w12 and y12 in terms of the regular solutions presented before to find new regular
solutions of the coupled KdV system. In fact, the denominator in the expressions for w12, y12

is manifestly positive and C∞. Moreover, we are going to show that if we choose adequately
the parameters of the given solitonic solutions the denominator in the expressions for w12, y12 is
strictly positive and the new solutions are regular solutions.

An interesting result about the regularity of the solutions, in the case of solitonic ones, is the
following (see also [1])

Theorem 2 For any value of the parameters η1 > 0, ρ1 6= 0, C1 and η2 > 0, ρ2 6= 0, C2 such that
η1 6= η2 and

C1

η1ρ1
=

C2

η2ρ2

the solutions for the coupled KdV system with λ = −1 obtained from the permutability formulas
are regular.

4. About the static solutions for the parametric coupled KdV system
In the most simple case of (3),(4),(5) and (6) the Bäcklund transformation reduces to

wx = 2η − 1
12

w2 (13)

wt =
1
6
wwxx −

1
3
wx

2. (14)

Clearly, we have started with the trivial solution and we have assumed that the field y is
identically zero. We have thus the Bäcklund transformation for the scalar KdV equation given
by

ut + uux + uxxx = 0. (15)

For η = 0 and assuming wt = 0, that is, w is only a function of the spatial variable x we get from
(13) wxx = −1

6wwx and substituting this in (14) we get −wx
3

(
w2

12 + wx

)
= 0. The conclusion is

that for this special type of solutions equation (14) gives only known information about equation
(13).

We also have that if w is a solution of (13) (for η = 0) then wx = u satisfies u2

2 + uxx = 0
and this automatically implies that ut = 0, because we have

ut +
(

u2

2
+ uxx

)
x

= 0.
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For example, a static solution for the equation (15) in the case of η = 0 can be obtained directly
integrating the equation wx = − 1

12w2, giving

w = − 12
x + K

,

where K is a constant of integration. We note however that this solution is a singular solution,
making a substantial difference with the solutions given by (12) (for the case λ = −1 and η = 0),
which are regular solutions.

This argument can be generalized to the Bäcklund transformation (3),(4),(5),(6). In fact, the
result about the static solution can be extended as follows

Lemma 2 Let w, y a solution of the parametric equations

wx = − 1
12

(
w2 + λy2

)
(16)

yx = −1
6
wy. (17)

Then u = wx, v = yx is a static solution of equations (1),(2).

Proof of Lemma 1 From (16),

ux = wxx = − 1
12

(2wwx + 2λyyx) =
w3

72
+

3
72

λy2w

uxx =
3
72

w2wx +
3
72

λ
(
2yyxw + y2wx

)
= − 1

288
(
w2 + λy2

)2 − λ

72
y2w2.

Then (1) becomes

ut +
(

u2

2
+ uxx + λ

v2

2

)
x

= 0, (18)

and when replacing the previous results we obtain

u2

2
+ uxx + λ

v2

2
= 0.

Consequently any solution of the system (16),(17) is a static solution of (1). In the same way
we can check that equation (2) is satisfied.

Remark: This result generalizes the formulas given by (12) for static solutions of the system
(1),(2).

5. The supersymmetric extension
The parametric coupled KdV system (1),(2) has a supersymmetic extension. It can be
constructed from the N = 1 supersymmetric KdV equation [5] by considering the fields valued
on a Zλ algebra [6] generated by e1, e2:

e1 ◦ e1 = e1, e1 ◦ e2 = e2, e2 ◦ e2 = λe1. (19)

If we express the super KdV fields U = ue1 + ve2, ξ = µe1 + νe2 then the new supersymmetric
transformations becomes

δu = ε1µ
′ + λε2ν

′ , δv = ε1ν
′ + ε2µ

′

δµ = ε1u + λε2v , δν = ε1v + ε2u,
(20)
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where ε1 and ε1 are two independent odd Grassmann supersymmetric parameters.
The supersymmetric extension is

ut = −u′′′ + 6uu′ + 6λv′v − 3µµ′′ − 3λνν ′′

vt = −v′′′ + 6(vu)′ − 3µν ′′ − 3νµ′′

µt = −µ′′′ + 3(uµ + λvν)′

νt = −ν ′′′ + 3(uν + vµ)′.

(21)

This system is invariant under the supersymmetric transformation (20).
In particular, if λ = 0 the system (1),(2) corresponds to one of the Hirota-Satsuma integrable

equations [2, 7]. The system (21) for λ = 0 becomes its supersymmetric extension.
The system (21), for any value of λ, has an infinite sequence of local conserved quantities.

It is a new integrable system. In particular if we consider the Grassmann algebra to have only
one generator e, then the system (21), for λ = 0, reduces to

ut = −u′′′ + 6uu′

µt = −µ′′′ + 3(uµ)′

vt = −v′′′ + 6(vu)′

νt = −ν ′′′ + 3(uν + vµ)′.

(22)

If in addition, we take v = ν = 0, the system becomes

ut = −u′′′ + 6uu′

µt = −µ′′′ + 3(uµ)′. (23)

In [8] we introduced the system

ut = −u′′′ − uu′ − 1
4

(
P

(
ξξ̄

))′
ξt = −ξ′′′ − 1

2(ξu)′.
(24)

It arises from a supersymmetric breaking of the N = 1 super KdV system. If we perform a
scale transformation ξ → αξ̂, assuming that the Clifford algebra has only one generator, and
take the limit α → 0 leaving ξ̂ and µ finite we obtain the system (23). The interesting point is
that (23) is a supersymmetric system, it has a hamiltonian structure and an infinite sequence
of conserved quantities, consequently system (24) in the above limit has those properties. For
α 6= 0 (24) has only a finite number of conserved quantities. Hence in the α → 0 limit we obtain
an enhancement of the symmetries of the system.

Consequently the system (23) has two hamiltonian structures, although one of it arises after
a limit process. The hamiltonian structures are not compatible. This is a new aspect to be
investigated since it is well known that supersymmetric KdV equations only have one local
hamiltonian structure.

6. Conclusions
We discussed the integrability properties of a coupled KdV system [1]. We obtained a new
generalization of the static solutions to the system. We also obtained new properties of the
supersymmetric extension of the coupled KdV system, which is a new integrable system. For
the particular case of a Grassmann algebra with only one odd generator the supersymmetric
system is the limit of a Clifford valued system with nice stability properties. Hence we expect
that the same stability properties will be valid for the supersymmetric system. It has two non-
compatible hamiltonian structures one arising from its supersymmetric structure and the other
one arising from the Clifford system in the limit procedure. This interesting aspect will be
analyzed elsewhere.
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