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Abstract. Temperature is a key physical quantity that is used to describe equilibrium between
two bodies in thermal contact. In computer simulations, the temperature is usually estimated
by means of the equipartition theorem, as an average over the kinetic energy. However,
recent studies have shown that the temperature can be estimated using only the particles
positions, which has been called configurational temperature. Through classical molecular
dynamics simulations of 108-argon-atoms system, we compare the performance of four di↵erent
temperature estimators: the usual kinetic temperature and three configurational temperatures,
Our results show that the di↵erent estimators converge to the same value, but their fluctuations
are di↵erent.

1. Introduction

The notion of temperature, as a statistical concept, relies on the ability to take averages over
long periods of time and over a large number of particles. One of the questions that naturally
arises is whether it is possible to extend the definition of temperature to small, finite systems. It
would be convenient, then, to know how di↵erent temperatures estimators (or “thermometers”)
behave, in order to decide which one is more suitable for each system.

In computer simulations, such as molecular dynamics, the temperature is calculated as the
time average of the kinetic energy of the system in equilibrium. This temperature is usually
called kinetic temperature. However, this is not the only way to estimate temperature. Recently,
it has been shown [1, 2, 3] that a family of estimators for the temperature exist, which can be
expressed in terms of the velocity only, or positions only, or both.

In this work, we study the behavior of four di↵erent temperature estimators in a system of
108 argon atoms interacting via the Lennard-Jones potential in the microcanonical ensemble.
The paper is structurated as follows. In section 2 we present the theoretical framework and the
explicit forms of temperature estimators. Section 3 describes the computational details of the
simulations, and section 4 show the results obtained from this simulations.

2. The Conjugate Variables Theorem (CVT) and configurational temperature

In the framework of statistical mechanics of hamiltonian systems, it has been recently proven,
using continuous maximum entropy inference, a general theorem (named Conjugated Variables
Theorem, CVT) connecting the Lagrange multipliers and the expectation values of a certain
particularly constructed functions of the states of the system [3]. This theorem states that for
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a system of N particles governed by a hamiltionian

H =
NX

j=1

~p 2
j

2mj
+ V (~r1, . . . , rN ), (1)

the following equality holds:
1

kBT
=

hr · ~ui
h~u ·rHi , (2)

where ~u is an arbitrary vector field, kB the Boltzmann constant, and T the temperature of
the system. This equation provides di↵erent estimators for the temperature, depending on the
choice of the vector field ~u. For instance, taking ~u = rH/krHk2, we obtain

1
kBT

=
⌧
r · rH

krHk2

�
. (3)

This particular choice of ~u corresponds to the expression for the dynamical temperature obtained
by Rugh [1], and shows that more general arbitrary definitions of temperature can be given. Note
that equation (3) provides a way to obtain the temperature as an average of what we call the
instantaneous temperature

1
kBT̂

⌘ r · rH

krHk2
. (4)

This can be expressed in a more convenient way by taking the divergence of the quotient:

1
kBT̂

= r · rH

krHk2
=

r2H

krHk2
�rH · [r(rH ·rH)]

krHk4
. (5)

A remarkable fact is that the operator r can be taken with respect to ~p, or respect to ~r, or
both. In this way we have a family of estimators for the temperature, T .

We are interested in comparing the performance of the following three di↵erent temperature
estimators:

1. Kinetic Temperature: This is the most common way in which the temperature is defined,
and in this formalism is obtained by taking the gradient over the momenta (r ⌘ r~p) on
equation (5). This leads to the expression

1
kBT̂1

=
1
K

✓
3N

2
� 1

◆
, (6)

where K =
PN

j=1
1
2mj~v

2
j is the kinetic energy of the system.

2. Configurational Temperature: If the gradient goes over positions ~r, we obtain

1
kBT̂2

=
r2V

krV k2
�rV · [r(rV ·rV )]

krV k4
. (7)

On this expression we can clearly see that the temperature depends only on the positions
of the particles (or configurations of the system), not on their velocities. This is what Rugh
called dynamical temperature.
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3. Truncated Configurational Temperature: It is not di�cult to prove that the second term in
equation (7) goes as 1/N , therefore the main contribution is on the first term. This means
that

1
kBT̂3

=
r2V

krV k2
(8)

is a good approximation for the configurational temperature when N is large.

In addition, we want to compare the average of these estimators, which corresponds to the
inverse temperature 1/kBT , with the inverse temperature coming from the ratio between two
averaged quantities:

1
kBT

=
⌦
r2H

↵

hkrHk2i . (9)

This equation comes from the choice ~u = rH in equation (2). Taking the gradient over the
positions ~r leads to

1
kBT4

=
⌦
r2V

↵

hkrV k2i . (10)

3. Model and computational details

In order to study the performance of 4 di↵erent temperature estimators in finite system we use
classical molecular dynamics simulations employing LPMD software [4]. The model consists of
108 Argon atoms interacting through the Lennard-Jones potential,

V (r) = 4✏

⇣�

r

⌘12
�

⇣�

r

⌘6
�

,

where r is the distance between atoms, whereas � = 3.41 Å and ✏ = 0.0103 eV are parameters
fitted for the argon interaction [5]. The simulation is performed in the microcanonical ensemble,
in three dimensions, without periodic boundary conditions.

Initially, we applied an energy corresponding approximately to 10 K, and then we run the
system for 10000 steps (one time step is equal to 1 fs). The instantaneous temperature is
estimated by three di↵erent expressions: T̂1, T̂2 and T̂3. The temperature is estimated as an
average over the last 5000 steps, and we called them T1, T2, T3 and T4.

4. Results

Figure 1 displays the performance with respect to the time of three di↵erent temperature
estimators, namely T̂1, T̂2 and T̂3. We can see that the value of the estimators are not very
di↵erent and when T̂2 and T̂3 temperatures increases, T̂1 decreases, and vice versa. Also the
fluctuations are similar.

For comparing the contribution of individual terms on the T̂2 estimator, we show in Figure
2 three important terms: r2V/krV k2, rV · [r(rV · rV )]/krV k4 and r2V/krV k2 � rV ·
[r(rV ·rV )]/krV k4. We can see that the second term of T̂2 estimator is one hundred times
smaller than the first term of that estimator. This is because the second term is of order 1/N ,
where N is the number of atoms in the simulation. Also, this explains that the first term of T̂2

estimator and the complete term are similar.
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Figure 1. Instantaneous temperature T̂1,
T̂2 and T̂3 for 108 argon atoms. Note that
the average of T̂2 and T̂3 are similar.

Figure 2. Contribution of the three terms
that compose T̂2 estimator, for 108 argon
atoms.

In order to study in more detail the behavior of the first term, r2V/krV k2, which is the
main contributor to the estimator T̂2, we show in Figure 3 and in Figure 4 the numerator and
denominator of that term. We can see that the average of r2V is two thousand times bigger than
the average of krV k2. On the other hand the fluctuations of r2V are smaller than fluctuations
of krV k2 .

Figure 3. r2V for 108 argon atoms Figure 4. krV k2 term for 108 argon
atoms.

Finally, we compute the averages of di↵erent temperature estimators and display them in
Table 1. Note that the value of T1 and T2, the kinetic and the configurational temperature,
respectively, are almost the same, with a relative porcentual di↵erence of 0.07%. Also, T4 is
close to T1 and T2. On the other hand, T3, which is T2 truncated, give the more di↵erent value,
although, also very close to T1 and T2, with a relative porcentual di↵erence of 0.98%

5. Concluding remarks

In conclusion, we have calculated the temperature of a small system in four di↵erent ways. The
explicit functional forms of the temperature were derived from CVT theorem [3], and three of
them are based on the positions only. We conclude that for long enough simulation time, the
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Table 1. Temperatures calculated in the simulation.

T1 T2 T3 T4

6.681±0.042 6.686± 0.035 6.620±0.0345 6.679±0.034

di↵erent temperature estimators converge to the same value, while the fluctuations are not the
same for each estimator.
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