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Abstract. In this study, an artificial neural network was optimized with particle swarm
algorithm and trained to predict the geomagmetic DST index one hour ahead using the past
values of DST and auroral electrojet indices. The results show that the proposed neural network
model can be properly trained for predicting of DST (t + 1) with acceptable accuracy, and
that the geomagnetic indices used have influential effects on the good training and predicting
capabilities of the chosen network.

1. Introduction
Geomagnetic activity is usually characterized by geomagnetic indices, the most common being
the storm DST index and the auroral electrojet indices [1]. Most indices have long records that
allow statistical studies of the causes of activity and of related phenomena. Correlations between
indices and possible drivers provide the basis for empirical prediction. The DST (t) is defined
as the average of the disturbance variation of the H component, divided by the average of the
cosines of the dipole latitudes at the observatories for normalization to the dipole equator [2].
DST index can serve as a good measure of the overall strength of the near-Earth electric currents,
especially the ring current. It is obtained from selected geomagnetic observatories operating at
equatorial regions. It is important to realize that the ultimate goal of space weather research
should be to forecast space weather and, at least, predict geomagnetic activity in terms of the
geomagnetic DST index as a function of time.

The auroral electrojet index was originally introduced by Davis and Sugiura [3] as a measure
of global electrojet activity in the auroral zone. The auroral electrojet index is derived from
geomagnetic variations in the horizontal component H observed from selected observatories
along the auroral zone in the northern hemisphere [4]. The auroral electrojet index is usually
used to represent four indices AU , AL, AE and AO. The AU and AL indices [3], are intended
to express the strongest current intensity of the eastward and westward auroral electrojets,
respectively [4]. The AE index is defined as AE = AU − AL [3], provides an estimate of the
overall horizontal current strength, and, to some extent, a rough measure of the ionospheric
energy losses [5]. And the AO index is defined as AO = (AU + AL)/2 [3], provides a measure
of the equivalent zonal current [6].
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In this work, the DST one hour ahead was estimate with a hybrid neural network+particle
swarm algorithm using the time series of the past values of DST and auroral electrojet (AE
and AO) indices.

2. Computational method
In this study, we consider one of the most successful and frequently used types of neural networks:
a multilayer feed-forward neural network with a back-propagation learning algorithm. This
consists of one input layer with N inputs, one hidden layer with q units and one output layer
with n outputs. The output of this model can be expressed as [7]:

yn = Fn
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where W
(a)
nj are the weights between unit j and unit n of input and hidden layers and W

(b)
jl

are the weights between hidden layer and an output. The activation functions Fn(x) and fj(x)
are linear or nonlinear. We used one hidden layer with fj(x) as a tangent hyperbolic nonlinear
activation functions and F1(x) as linear function in output layer. For a given set of N inputs,
we define the root mean square error (RMSE) by:

RMSE =

√∑N
s=1 (yreals − ycalcs )

2

N2
(2)

where yreal denotes the actual given output and ycalc the neural network output. This network
was trained to minimize RMSE, replacing the gradient descendent error by a paricle swarm
optimization (PSO) [8].

PSO is a population-based optimization tool, where the system is initialized with a population
of random particles and the algorithm searches for optima by updating generations [9]. In each
iteration, the velocity of each particle j is calculated according to the following formula [10]:

vk+1
j = ωvkj + c1r1

(
ψk
j − skj

)
+ c2r2

(
ψk
g − skj

)
(3)

where s and v denote a particle position and its corresponding velocity in a search space,
respectively. k is the current step number, ω is the inertia weight, c1 and c2 are the acceleration
constants, and r1, r2 are elements from two random sequences in the range (0,1). skj is the current

position of the particle, ψk
j is the best one of the solutions that this particle has reached, and ψg

is the best solutions that all the particles have reached. In general, the value of each component
in v can be clamped to the range [−vmax, +vmax] control excessive roaming of particles outside
the search space [9]. After calculating the velocity, the new position of each particle is:

sk+1
j = skj + vk+1

j (4)

Thus, all the neurons of the ANN have an associated activation value for a give input pattern,
and the algorithm continues finding the error that is presented for each neuron, except those
of the input layer. After finding the output values, the weights of all layers of the network are
actualized Wnj → W ′

nj by PSO, using eqs. (3 and 4) [8]. The velocity is used to control how
much the position is updated. On each step, PSO compares each weight using the data set. The
network with the highest fitness is considered the global best. The other weights are updated
based on the global best network rather than on their personal error or fitness [9]. In PSO,
the inertial weight ω, the constant c1 and c2, the number of particles Npart and the maximum
speed of particle summary the parameters to syntonize for their application in a given problem.
An exhaustive trial-and-error procedure was applied for tuning the PSO parameters. Firstly,
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the effect of ω was analyzed for values of 0.1 to 0.9. Next, the effect of Npart was analyzed for
values of 10 to 100 particles in the swarm. Table 1 shows the selected parameters for this hybrid
algorithm.

Table 1. Parameters used in the hybrid ANN+PSO algorithm.

Section Parameter Value

ANN NN-type feed-forward
Number of hidden layers 1
Transfer function tansig
Number of iterations 1500
Normalization range [–1, 1]
Weight range [–100, 100]
Bias range [–10, 10]
Minimun error 1e–3

PSO Number of particles in swarm (Npart) 50
Number of iterations (kmax) 1500
Cognitive component (c1) 1.494
Social component (c2) 1.494
Maximum velocity (vmax) 12
Minimum inertia weight (ωmin) 0.5
Maximum inertia weight (ωmax) 0.7
Objective function RMSE

3. Database and training
A data set of geomagnetic DST index and auroral electrojet indices were taken from World Data
Center for Geomagnetism of Kyoto [11], and used to train the network. This work used a leave-
20%-out cross-validation method to estimate the predictive capabilities of the model. Training
and prediction sets were selected with the consideration that the DST variations are present
with adequate frequency in the training database. Then, 43848 hourly data points (years 2000 to
2004) were used in the training set, and other 8760 hourly data points (year 2005) were used in
the prediction set. From this database, the best input vectors obtained to solve DST (t+1) were:

N[DST (t− 3), AE(t− 3), DST (t− 2), AE(t− 2), DST (t− 1), AE(t− 1), DST (t), AE(t)] (5)

N[DST (t− 3), AO(t− 3), DST (t− 2), AO(t− 2), DST (t− 1), AO(t− 1), DST (t), AO(t)] (6)

The selected geomagnetic indices cover wide ranges, going from −442 to 67 (nT) for DST
index, from 4 to 2241 for AE index, and from −942 to 1071 for AO index. Figure 1 shows the
time series used and ranges for these indices.

4. Results and discussion
Several network architectures were tested to select the most accurate scheme. The most basic
architecture normally used for this type of application involves a neural network consisting
of three layers [8]. The number of hidden neurons needs to be sufficient to ensure that the
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Figure 1. Time series of geomagnetic indices used in this study.

information contained in the data utilized for training the network is adequately represented.
There is no specific approach to determine the number of neurons of the hidden layer, but
many alternative combinations are possible. The optimum number of neurons was determined
by adding neurons in systematic form and evaluating the average absolute deviations of the
sets during the learning process [9]. Figure 2 shows the deviation found in the prediction of
DST (t + 1) as a function of the number of neurons in the hidden layer. As observed in this
figure, the optimum number of neurons in the hidden layer is between 6 and 9. Table 2 summarize
the statistical results obtained in the estimation of DST (t+ 1) using the selected input. In this
table MAE is the mean absolute error, RMSE is the root mean square error, and R2 is the
correlation coefficient.

Table 2. Statistical results obtained in the estimation of DST (t+ 1).

Input Architecture Step MAE RMSE R2

Training 2.7070 4.2852 0.9829
Eq. (5) 8-6-1 Prediction 1.9991 2.8671 0.9661

Total 2.5654 4.0416 0.9824

Training 2.7564 4.3279 0.9826
Eq. (6) 8-8-1 Prediction 2.0112 2.8971 0.9653

Total 2.6074 4.0821 0.9820

Figure 3 shows a comparison between the real (solid line) and calculated values (points) of
DST (t + 1), obtained by the neural network models. Fig. 3a show the results obtained using
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Figure 2. Time series of geomagnetic indices used in this study. DST + AE (blue line), and
DST +AO (green line).

the past values of DST and AE (Eq. 5). For the training (years 2000–2004), the correlation
coefficient R2 is 0.9829 and the slope of the curve m is 0.9691 (expected to be 1.0) with RMSE
of 4.2852. For the prediction (year 2005), R2 is 0.9661, m is 1.0102 (expected to be 1.0) and
RMSE of 2.8671. Fig. 3b show the results obtained with Eq. 6. In this case, for the training
step (years 2000–2004), R2 is 0.9826, m is 0.9769 and RMSE is 4.3279. And for the prediction
step (year 2005), R2 is 0.9653, m is 1.0095 and RMSE is 2.8971.

Currently, various models have been developed to predict DST [12]. However, comparative
studies of artificial neural networks (ANNs) and the traditional regression approaches in
modelling DST have also been conducted, and it has been shown that ANN methodology offers
a promising alternative to the traditional approach [13]. In this case, a comparison was made
with a multiple linear regression (MLR) method, and similar database. The MLR method show
errors higher than 500% and accuracy of <50% with R2 of 0.5 for the prediction of DST (t+ 1)
using DST +AE versus the ANN+PSO method with accuracy of >97% and R2 >0.96. Similar
results were obtained for the prediction of DST (t+1) using DST +AO. These results represent
a tremendous increase in accuracy for estimating this important geomagnetic index and show
that not only the optimum architecture obtained was crucial, also the appropriate selection of
the independent parameters (Eq. 5 and 6). This is important because the auroral electrojet
indices AE and AO are commonly available parameters [11]. Note that the coefficients of
linear correlation of these parameters show a non-linear relationship with the DST [1], and
consequently an ANN is the best alternative to model the DST for several applications. The
innovative aspect of this study is the use of a neural model with only two input variables
and a very limited number of neurons in the hidden layer. This ANN was optimized with a
particle swarm algorithm to update the weight of the network. To the best of the authors’s
knowledge, there is no application for DST forecast such as the one presented here, using a
hybrid ANN+PSO algorithm.
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Figure 3. Comparison between calculated and real values for the estimation of DST (t + 1).
(a) Calculated using Eq. 5, DST +AE. (b) Calculated using Eq. 6, DST +AO.

5. Conclusions
This study presents a method that includes an artificial neural network (ANN) replacing
standard backpropagation with particle swarm optimization (PSO). Then, DST index one hour
ahead was estimate by this hybrid algorithm using the time series of the past values of DST
and auroral electrojet (AE and AO) indices.

Based on the results presented in this study, the following main conclusions are obtained: i)
The results show that the proposed neural network models with eqs. 5 and 6 can be properly
trained for predicting the DST (t+1), with acceptable accuracy; ii) the geomagnetic indices used
have influential effects, on the good training and predicting capabilities, of the chosen network;
iii) The low deviations found with the proposed method indicate that it can predict the future
values of DST with better accuracy than other methods available in the literature.
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