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Abstract. It is assumed that at energies around the knee the nucleus-nucleus interaction is 

drastically changed due to production of blobs of quark-gluon matter with very large orbital 

momentum. This approach allows explain all so-called unusual events observed in cosmic rays 

and gives a new connection between results of EAS investigations and energy spectrum and 

mass composition of primary cosmic rays. To check this approach, the experiments in cosmic 

rays and at LHC are proposed. 

1.  Introduction 

In cosmic ray investigations, the energy region about 1015 eV is very interesting and important. Firstly, 

this region separates two main methods of cosmic ray investigations: direct measurements at satellites 

and balloons and EAS investigations. Secondly, namely above this energy the basic characteristics of 

cosmic rays: energy spectrum and mass composition are changed. At the energy about 3 PeV in the 

spectrum the knee appears and the mass composition becomes heavier. Now all these changes of the 

energy spectrum and mass composition are explained by cosmophysical reasons, in spite of fact that 

all experimental results are obtained from EAS observations, and their recalculations to primary 

cosmic ray parameters are model dependent. 

2.  Why a new approach in required? 

The knee was firstly observed almost 60 years ago [1]. But no exhaustive and consistent description of 

the knee appearance for this long period was proposed. On the other hand, for this period many 

unusual results in cosmic ray experiments at energies above the knee were obtained. Among them: 

Halos, Alignment, Penetrating cascades, Centauros and others [2], which cannot be explained in the 

frame of existing theoretical models and approaches. Additionally in the last years so-called “muon 

puzzle” appeared: excess of muons in EAS investigations compared to calculations [3-6] and excess of 

VHE muons (> 100 TeV) [7]. 

It is necessary to remark that all these results were obtained at the Earth’s surface at various 

altitudes after multiple interactions of primary and secondary particles with nuclei of nitrogen or 

oxygen in the atmosphere. Therefore the results of observations and measurements are strongly 

dependent on models of such interactions. 

Today there is no model which could describe all observed unusual phenomena from a single point 

of view. All existing models of strong interactions are based on extrapolation of accelerator results to 

higher energies. However good accelerator data were obtained for pp-interactions only. In cosmic rays 

most part of interactions are nucleus-nucleus (~ 60%) and proton-nucleus (~ 40%). But in the nucleus-
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nucleus interactions, even in LHC experiments, serious deviations from existing models are observed. 

For example, in [8] a more fast increase of secondary particle multiplicity was observed. Of course 

existing models are being improved and new models appear. But they do not include any serious 

deviations from existing conception that nucleus-nucleus interaction is a certain sum of nucleon-

nucleon interactions. 

What is necessary to explain all unusual data obtained in cosmic ray experiments including changes 

in energy spectrum and mass composition? For that a model of strong interactions is required which 

must give: threshold behavior, since all unusual events and phenomena appear at energies of several 

PeV only; large cross-section, which is necessary to observe various unusual events and phenomena in 

cosmic rays experiments; large orbital momentum to explain the alignment; large yield of VHE 

leptons to explain excess of VHE muons and penetrating cascades; the change of EAS development 

and, as a consequence, change of eN N  ratio and 
maxX  behavior with increasing of energy [9]. 

Of course these requirements are very unusual and contradictory. For example, since muons cannot 

be produced in hadron interactions directly, it is necessary to suppose that at the knee energy (about 3 

TeV in the center of mass system) some new state of matter with effective mass ~ TeV appears and 

then decays into leptons. But production of some particle with mass ~ TeV has a very small 

geometrical cross section 
2 2 34 2πλ π 10 cmm 

 and cannot be observed in cosmic rays. Therefore a 

new approach to nucleus-nucleus interaction description is required. The most attractive model is that 

of quark-gluon plasma, though it is better to speak about quark-gluon matter (QGM) since usual 

plasma is like a gas, and quark-gluon plasma behaves like a liquid. 

3.  New model of nucleus-nucleus interaction 

The main idea of a new model of nucleus-nucleus interactions is the production of some blob of 

quark-gluon matter, which includes considerable parts of interacting nuclei. This provides the 

fulfilment of two main requirements to new model of interaction: 

 threshold behavior, since for that high temperature (energy) is required; 

 large cross-section, since the transition from quark-quark interaction to some collective 

interactions of many quarks (and gluons) occurs: 

    2 2π πR     ,    (1) 

were R is a size of quark-gluon blob. 

For explanation of other observed phenomena a large value of angular momentum is required. As 

was shown in paper [10], in non-central ion-ion collisions an orbital angular momentum appears. Its 

value can be very large and is increased with central-of-mass energy s . As calculations showed [11] 

the value of this momentum can reach about ~ 104 in interaction of Au-Au nuclei. Such large orbital 

momentum changes the situation with decays of QGM blob drastically. 

Globally polarized QGM blob with large orbital momentum can be considered as a usual resonance 

with a large centrifugal barrier:  

      2 22V L L mR ,     (2) 

which will be large for light quarks but much less for top-quarks. And though in interacting nuclei top-

quarks are absent strong suppression of decays into light quarks gives time for production of heavy 

quarks in the boiling quark-gluon matter. For top-quarks the centrifugal barrier will be low and decays 

into tt -quarks are possible. This circumstance changes results of nucleus-nucleus interaction in 

following ways.  

1. Simultaneous interactions of many quarks change the value of energy in the center-of-mass 

system: 

    p 1 c 12 2s m E m E  ,    (3) 

where 
c Nm nm , and n – is the number of nucleons in QGM blob. In the first approximation, the 

minimal value of n can be evaluated as 4 (
cm is the mass of α -particle). But really it can be larger. 
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This point is important for new model, since it determines the conditions of transition from quark-

quark interactions to interaction of many quarks. 

2. Produced tt -quarks pair takes away from QGM blob at least about 350 GeV (
t2m ), and taking 

into account fly-out energy this value can be equal about 700 GeV in the center-of-mass system. 

After this drastic decreasing of s  and L correspondingly QGM blob can decay into more light 

quarks, eventually into u- and d-quarks. 

Top-quark has a very short life time (10–25 s) and decays into W-boson and b-quark 

     t t W W b b   , b-quark gives a jet, in which transitions b s u   are possible. W-bosons 

decay into leptons (~ 30%) and hadrons (~ 70%), mainly pions (in average ~ 20). 

These new processes change the development of EAS in the atmosphere. Therefore evaluation of 

primary particle energy by using measured parameters of EAS without taking into account new 

processes may give results which are very far from reality. 

4.  Consequences for CR and LHC 

The proposed model can explain all events and phenomena observed in cosmic rays from a single 

point of view. 

Firstly, production of top-quarks and correspondingly W-bosons with a large cross-section gives a 

possibility to solve “muon puzzle”. Decays of W-bosons into muons and neutrinos explain the excess 

of VHE muons with energy above 100 TeV and appearance of penetrating cascades [12]. Decays of 

W-bosons into hadrons (mainly pions, in average ~ 20) explain the increasing number of muon 

bundles with the increase of energy. 

Secondly, all unusual events, observed in cosmic ray experiments above 1015 eV: alignment, halos, 

Centauros, penetrating cascades etc. [13]. 

Thirdly, it can explain changes of the EAS energy spectrum behavior. Now the transition from the 

measured EAS parameters to its energy does not take into account a change of EAS development due 

to a change of the interaction model. To illustrate this circumstance in figure 1 the cascades in the 

atmosphere initiated by proton and iron nucleus in frame of existing models and initiated by protons in 

frame of new model. One can see that introduction of t-quark production gives practically the same 

results as a change of the primary particle. How is the energy spectrum changed in this situation? As a 

result of EAS development change and taking into account a missing energy taken away by neutrinos 

and VHE muons, the measured EAS energy E2 will not be equal to primary particle energy E1, and 

correspondingly the measured spectrum will differ from the primary spectrum. Transition from energy 

E1 to energy E2 gives a bump in the energy spectrum near the threshold of the new state of matter 

production (figure 2). 

How the measured composition is changed in frame of the new model? Since for QGM production 

not only high temperature (energy) but also high density is required, threshold energy for production 

of the new state of matter for heavy nuclei will be less than for light nuclei and protons. Therefore 

heavy nuclei (e.g. iron) spectrum is changed earlier than light nuclei and proton spectra! And 

measured spectra for different nuclei will not correspond to the primary composition (figure 3). But 

the energy spectrum of all nuclei will be in a good agreement with experimental data (figure 4).  

How to check the new model? In cosmic ray experiments, there are two possibilities [14]. The first 

one is the measurement of the energy deposit of muon bundles. Changes in this value in dependence 

on primary particle energy will evident that some new processes of muon generation are included. 

These measurements can be performed in the NEVOD-DECOR experiment in which the number of 

muons and their energy deposit can be measured by different detectors [15]. The second one is the 

measurement of inclusive muon energy spectrum above 100 TeV. Detection of excess of VHE muons 

will evident for muon generation in decays of heavy particles (e.g., W-bosons). Such measurements 

can be performed in IceCube. 

Good possibilities to check the new model are available in LHC experiments, since such 

predictions as excess of t-quarks, excess of W-bosons, sharp increase of missing energy, etc. can be 
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measured by existing LHC detectors. But it is better to do these measurements in AA-interactions (as 

in cosmic rays) than in pp-interactions. Of course, the search of t-quarks and W-bosons in AA-

interactions is a more complex task compared to pp-interactions, due to a very large multiplicity of 

secondary particles. Apparently, some observations of the effects predicted by the new model were 

obtained in AA-interactions [16]. 
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Figure 1. EAS cascade curves in the atmosphere 

for p, Fe primary particles in the frame of 

standard interaction model and for protons with 

production of t-quarks.  

Figure 2. Formation of the measured cosmic ray 

energy spectrum in frame of the nuclear-physical 

approach (production of the knee with some 

“bump”). 
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Figure 3. Changes of various CR nuclei spectra in 

the frame of the considered interaction model. 

Figure 4. Spectrum calculated in the frame of the 

new interaction model and experimental data. 

 

5.  Conclusion 

The considered approach to interpretation of results of EAS measurements allows to solve problems of 

primary cosmic ray energy spectrum and composition explanation. 

Possibilities of searching of a new state of matter with mass ~ TeV exist as in LHC experiments: 

searches of excess of t-quarks and W-bosons, so in CR experiments – study of the energy deposit of 

muon bundles (NEVOD-DECOR) and measurements of muon energy spectrum above 100 TeV in 

IceCube. 
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