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Abstract. Hot electron generation in intense laser-matter interaction studies is a topic of great 

interest due in significant part to its applications in fast ignitor scheme in Inertial Confinement 

Fusion (ICF). We measure the hot electron energy spectrum from Ag nanoparticle coated fused 

silica target (100 µm thick) interacting with an intense (I~1018W/cm2), short pulse (τ~ 30× 

10−15s) laser and compare the results with those of an uncoated fused silica. Enhancement in 

hot electron energy and hard x-ray yield is measured as a function of thickness of Ag nano-

coating, varied from tens of nm to hundreds of nm. The hot electron temperatures and 

integrated x-ray yield are observed to be greater for subwavelength film thicknesses for the 

case of a p-polarized laser. Such results indicate that metal nanoparticle layers have an 

important role to play in the enhancement of laser-plasma coupling efficiency for short scale-

length plasmas created in femtosecond laser interactions. 

1.  Introduction 

An intense, ultrashort, laser pulse interacting with solid matter creates a solid density plasma via 

different ionization mechanisms [1] and couples with the plasma thereafter via collective processes 

engendering the generation of hot electron jets [2], ion acceleration [3], ultrashort X-ray pulses [4], 

high harmonics [5] and other kinds of radiation such as Cherenkov [6] and THz radiation [7]. Several 

standard diagnostics are employed to determine the efficiency of coupling between the laser light and 

the pre-ionized hot, dense matter. One such diagnostic is Electron Spectrometry (ESM) [8] which 

characterizes the energy spectra of the hot electrons. The distribution curve is a typical bi-Maxwellian 

[9] exhibiting two temperatures. The hot electron temperature 𝑇ℎ𝑜𝑡 may scale either as the square root 

[10] or one-third power [11] of the laser intensity depending on the dominant absorption mechanism.  

Measurement of integrated X-ray yield (bremsstrahlung and 𝐾∝ emission) is another diagnostic of 

the laser-plasma coupling efficiency as higher yield in X-rays imply greater absorption which in turn 

implies hotter electrons. Structured targets [12] such as nanorod arrays [13], nanometric 

subwavelength gratings [14] and microstructures [15] are known to enhance the conversion efficiency 

of laser energy into x-rays and hot electrons. Such an enhancement is attributed to the local electric 

field enhancement of several orders of magnitude at the surface structures due to the “lightning rod 

effect” [16]. Consequently, multifold enhancement in X-ray yield has been observed for such 

structured samples [12-15].  
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In our experiment, we have investigated the effect of sputter deposited layers of Ag nanoparticles 

with subwavelength thickness (~ 30-100 nm) on the laser energy conversion efficiency by measuring 

the hot electron spectrum by ESM and X-ray yield as a function of film thickness. The hot electron 

temperatures and x-ray yields for different film thicknesses have been compared with that of a plane, 

uncoated fused silica target of thickness 100𝜇𝑚 which also serves as a substrate for the coated targets. 

In the next section, we describe our experimental set-up in detail following which we present our 

findings and discuss their implications. A summary is presented in subsection 2.1. 

2.  Experimental setup  

The experiment was performed with the 100 TW laser facility at TIFR (Ti: Sapphire, 800nm central 

wavelength) which delivers 25 fs pulses at a repetition rate of 10 Hz. The ASE contrast of the pulse 

was measured to be ~1010. The laser beam is focused onto the target to a spot size of 10 𝜇𝑚 (FWHM) 

using an (f/2.5) Off-axis parabolic mirror. ESMs were placed along target front, target rear and laser 

direction simultaneously to obtain information on the dominant heating mechanism. A NaI (Tl doped) 

detector coupled with a photomultiplier tube was placed at the target front at a distance of 90cm from 

the target surface. To reduce counts due to noise from cosmic particles, the detector was placed inside 

a thick lead cylinder and lead apertures were used to avoid saturation and pile-up due to excess X-ray 

flux. A schematic of the experimental setup is shown below (Fig.1). 

 
Fig. 1. Schematic of experimental setup. 

 

As shown in Fig. 1, the laser beam was incident on the target sample at 45∘ angle of incidence, 

with its electric field polarized in the plane of incidence (p-polarized). The intensity on target was 

~1018W/cm2. Both the electron energy spectra and the integrated X-ray yield were averaged over a 

total of around 30-40 shots for the coated samples and 70 shots for the plane FS sample.  
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Fig. 2.  (a) Energy spectrum along target front normal (b) Hot electron energy spectrum for 30 nm 

(orange) and 45 nm (green) coating thickness along J×B direction. (c) ESM energy spectrum along 

target rear normal (no trace obtained for plane FS).  

Results.   Fig. 2 shows the electron energy spectra for the coated and plane targets along the three 

directions. Along all three directions, target with film thicknesses around 30−45 nm yield electrons 

with highest temperatures. The temperatures are highest along the J×B direction, revealing J×B 

heating as the dominant heating mechanism for our case. The above trend clearly indicates a role of 

film thickness in optimizing the laser energy coupling efficiency with the plasma. The significantly 

lower electron temperatures in case of 100 nm film coated target, on the other hand, seems to imply 

the thickness dependence is weak or altogether absent for coating thicknesses above 100nm.  
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Fig. 3. Integrated x-ray yield as a function of coating thickness 

 

The X-ray yield result (Fig.3) show a similar trend of enhancement for the nanocoated targets but 

the thickness dependence is not prominent due to large error bars in the yield values owing to 

statistical fluctuations in the X-ray signal. This may be due to the X-rays being generated both from 

the coating and the substrate interface.  

2.1.  Discussion 

In our experiment, we have assumed absence of any laser instability mechanism (TPD, SRS) affecting 

the x-ray and hot electron generation, due to the extremely high contrast (~ 1010 ns contrast) of the 

laser pulse [17] and requirement of high threshold intensity for the SRS [18] to occur. Further, all ion 

motions and related instabilities (ion-acoustic waves, Langmuir decay instability) were ignored due to 

the extremely short time-scales of interaction involved.  

In summary, we performed an experimental investigation of laser-plasma coupling efficiency in Ag 

nanoparticulate coatings for intense, femtosecond pulses by measuring the hot electron energy 

spectrum and time integrated X-ray yield and compared the results with that of a bare FS target. It was 

found that the electron temperatures were the highest for 30 and 45 nm film thickness with J×B 

heating as the dominant acceleration mechanism. The X-ray yield was higher for coated targets as 

compared to the plane one by about 5 orders of magnitude but the thickness dependence of the 

enhancement was unclear due to large statistical fluctuations in the signal. These results indicate the 

presence of a length scale besides the morphology of the coating which must be taken into account to 

control the generation of hot electrons in a high intensity laser-matter interaction. However, for an 

accurate physical interpretation of the underlying mechanism, simulations are required.  
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