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Abstract. Ignition and significant fusion yield from inertial confinement fusion (ICF) remains 
a grand scientific challenge with significant near-term and long-term applications. The ICF 
community in the U.S. is executing a coordinated effort to explore three viable approaches: 
laser x-ray drive, laser direct drive, and magnetic direct drive. Cooperative efforts from 
multiple institutions are directed at the physics basis of each of the three approaches with 
advancing diagnostics, precision targets, and improved simulations being the basis for the 
quest. X-ray drive experiments between 2010 and 2012 at the National Ignition Facility (NIF) 
gave yields much lower than expected because of both challenging hydrodynamics associated 
with high capsule convergence (~35×) and laser–plasma instabilities (LPI’s) in the hohlraum. 
Recent experiments employing a variation of the laser pulse and resulting in lower convergence 
and lower hydrodynamic instability growth gave higher yields approaching 1016 neutrons (for 
the first time with significant fusion heating of the fuel), roughly in agreement with predictions 
for that approach. At the Omega Laser Facility the direct laser drive of the capsule is being 
developed to determine what could be expected if the NIF were reconfigured for spherical 
direct drive. Recent experiments on OMEGA, hydrodynamically scaled to the NIF, project to 
yields similar in nature to those of the best x-ray drive cases. Mitigation of cross-beam energy 
transfer (CBET) is required for improvement in direct-drive implosions. At the Z pulsed-power 
facility, a new approach of magnetically pinching a cylinder containing magnetized and laser-
heated plasma shows promise for attaining significant fusion yield. Improvements in this 
technique are being addressed at a number of facilities. In addition to the fusion-yield 
experiments, a number of basic science studies use the advanced facilities to study plasma 
physics, materials science, and astrophysical phenomena at extreme parameters not previously 
available in a laboratory. 

1.  The U.S. ICF community seeks understanding of physics leading toward greater fusion yield 
Through coordinated research, three approaches to laboratory fusion burn are being developed, 
following the community-developed plan for inertial confinement fusion (ICF) [1]. Highly capable 
facilities, including the National Ignition Facility (NIF; Livermore, CA), the Omega Laser Facility 
(Rochester, NY), and the Z pulsed-power facility (Albuquerque, NM) are central to this research. 

Advanced diagnostics, precision targets, and detailed simulations are critical to all three 
approaches. Greater resolution in time and space of the fusion capsule along with emissions from it is 
a particularly important objective of diagnostics development. Experiments that appropriately agree 
with detailed simulations are expected to serve as touch points for developing physics understanding 
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and seeking increased fusion yields. In all three cases, advances have been achieved over the past two 
years that provide the basis for further research and development. 

2.  Laser x-ray drive has achieved fusion heating for the first time 
At the NIF, depicted in the first panel of figure 1, laser beams are directed to the inside walls of a 
hohlraum, where they generate x rays to fill the cavity and drive the ablation of the spherical capsule. 
The capsule has an outer ablator material (CH, Be, or high-density carbon) with an inner frozen shell 
of deuterium and tritium (DT) ice and central DT gas. Experiments at the NIF from 2010 through 2012 
used a target and laser pulse designed to achieve ignition and modest fusion gain. The laser pulse had 
four steps in energy selected to drive the capsule on a low adiabat (~1.5) to a greater-than-35× 
convergence. The experiments achieved a fusion yield significantly lower than expected because of 
the growth of hydrodynamic instabilities, high convergence, and time variation of the x-ray drive. The 
hohlraums employed in these experiments were dominated by laser–plasma instabilities (LPI’s), 
limiting the accuracy and quantitative understanding of the time- and space-varying radiation field 
needed for the demanding implosions required for ignition. 

 

Figure 1. The three approaches to fusion burn currently in development in the U.S. ICF program 
and the major facilties where research is being conducted. 

To drive the capsule to lower convergence with lower hydrodynamic instability growth, a laser 
pulse with higher initial power (foot) and fewer energy steps was employed: the “high-foot” 
implosions [2]. These experiments are on a higher adiabat (~2.5) and are not predicted to result in 
ignition (more fusion yield than laser energy input to the target). In these experiments, yield increased 
by about a factor of 10 to within about a factor of 2 of prediction, and for the first time significant 
heating of the fuel by fusion alphas resulted in an increased fusion yield (see figure 2). These 
experiments are within about a factor of 2 of the hot-spot density, temperature, and pressure required 
for ignition. Under these conditions the yield is slightly more than doubled as a result of alpha 
heating [2,3]. 

Understanding and improving the hohlraum energetics and x-ray drive at the NIF are critical to 
achieving the ignition goal. Hohlraums with different shapes and different gas fills are being 
investigated [4] along with different ablators for the capsule that have either improved hydrodynamic 
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behavior or are better matched to a specific hohlraum and radiation pulse. A number of papers within 
this volume discuss these investigations; in particular see Hurricane et al. [2]. 

3.  Laser direct-drive experiments seek an understanding of what might be achieved by 
reconfiguration of the NIF for spherical direct drive 
Most experiments on laser direct drive are conducted at the Omega Laser Facility, depicted on the 
center panel of figure 1. Experiments are also conducted at the Nike KrF laser at the Naval Research 
Laboratory and at the NIF [with polar direct drive (PDD) [5], which approximates symmetric drive 
without spherical laser beam input]; these experiments address specific direct-drive physics issues. 
Experiments on OMEGA investigate spherical drive of layered DT-filled capsules with an extensive 
suite of diagnostics. Hydrodynamic scaling of parameters used on OMEGA to NIF laser energies 
allows one to infer what may be accomplished with spherical drive at the NIF. The NIF can be 
reconfigured for spherical direct drive but the time and cost of reconfiguration lead to a requirement 
for high confidence as to the fusion yield that might be obtained. The physics of spherical direct drive 
presents a compelling opportunity for laser-driven fusion. Relative to x-ray laser drive, the direct 
coupling requires smoother laser beams but, for a given laser energy, will allow ~7× more fuel to be 
compressed at the same implosion velocity, in turn requiring 3×- to 4×-lower stagnation pressure (~120 
Gbar versus ~350 Gbar for NIF indirect drive designs) and lower convergence as a result. 

Current DT implosions on OMEGA, scaled to NIF conditions, would give alpha heating with about 
the same results as x-ray drive (see figure 3), with somewhat greater yield (~100 kJ) because of the 
increased amount of fuel compressed. These results are presented by Goncharov et al. [6] in this 
volume. The best OMEGA direct-drive result to date produced 56 Gbar in the hot spot of the 
converging capsule. A pressure of about 120 Gbar is required for ignition at the NIF with spherical 
direct drive. 

Observations on OMEGA provide evidence that laser–plasma interactions in the plasma ablating 
from the capsule surface limit laser coupling to the capsule through cross-beam energy transfer 
(CBET). Some of the incident laser energy is coupled to the outgoing portion of laser beams missing 
the converging target, reducing ablation pressure by up to 50%. Techniques to mitigate CBET by 
zooming [7] the laser beams to a smaller spot size as the capsule implodes, together with other 
improvements, are being implemented on OMEGA with the goal of demonstrating Pfuel > 100 Gbar 
by the end of the decade. Realizing this goal would provide reasonable confidence that ignition might 
be achieved at the NIF through reconfiguration for spherical direct drive. 

 

  

Figure 2. Fusion yield with laser x-ray drive at the NIF 
as a function of the Lawson scaling parameter [2,3]. 

Figure 3. Fusion yield showing the best 
result with laser direct drive on OMEGA, 
scaled to NIF energy [3,6]. 
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4.  Magnetic direct drive of a magnetized and laser-heated plasma can provide fusion yield 
At the Z pulsed-power facility, a new approach is being developed for fusion yield as depicted in the 
third panel of figure 1 and in figure 4. A cylindrical beryllium liner, 1 cm in length and containing 
a magnetized plasma heated by a laser to ~200 eV, is pinched by a strong, fast electrical pulse directly 
driving the plasma to fusion conditions [8]. The Z operates at a current of up to 26 MA and power up 
to 77 TW. Recent experiments [8] obtained 2 × 1012 DD fusion neutrons but, as expected, increases in 
both the applied magnetic field (Bz0) and laser heating are required to obtain more-significant yield. 
Evidence has been developed that the Z Beamlet laser (ZBL) with an unconditioned beam and a thick 
laser entrance window (~3 µm) coupled only several hundred joules rather than the ~1 kJ of expected 
energy into preheating the plasma, so this is an area for further research. Experiments on OMEGA and 
the NIF that can help address this issue are currently underway. The use of multiple facilities and 
research teams can rapidly advance this concept. A D–D fusion yield equivalent to 100 kJ of 
D−T yield is predicted for experiments at Z if 6 to 8 kJ of preheat, and ~30-T B field, and ~25 MA 
of current can be successfully applied to the target, provided that instability and mix can be 
adequately controlled. 

 

Figure 4. Magnetic liner implosion fusion (MagLIF) with a beryllium cylinder filled with a 
magnetized deuterium plasma and preheated by the Z Beamlet Laser (ZBL) directly pinched in 
the Z. 

5.  The ICF facilities provide extreme conditions that can advance other physics areas 
The NIF, OMEGA, and Z all provide an opportunity to study plasma physics, atomic and nuclear 
physics, material behavior, and astrophysical phenomena at conditions of temperature and pressure not 
previously available in the laboratory. As an example, material properties at pressures relevant to 
planet formation are being studied on the NIF [9], Z, and OMEGA. Experiments on OMEGA and Z 
show distinct plasma-flow–generated instabilities [10] and important opacity of iron [11], respectively 
(see figure 5 for configuration and data examples). Significant contributions in the future are expected 
in a wide range of high-energy physics topics using these state-of-the-art facilities. Contributions to 
planetary science, material science, fundamental plasma physics, stellar, and astrophysics are expected 
over the next decade. 
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Figure 5. (a) Experiments on OMEGA [10] and (b) Z [11] provide advanced physics results. 

6.  Conclusion 
The U.S. Inertial Confinement Fusion (ICF) Program continues the quest for fusion yield in the 
laboratory through the cooperation of multiple institutions and research teams addressing the physics 
constraints. The three approaches may provide different advantages in the various application of ICF. 
Over the next few years, research will focus on the science and understanding needed for ignition and 
either achieving it or determining what is needed and in advancing high-energy-density physics. 

Acknowledgment 
A number of people specifically participated in preparation of the talk at the IFSA Conference, which 
was the basis for this paper: T. C. Sangster, E. M. Campbell, and the Publications and Design 
Department of the University of Rochester, Laboratory for Laser Energetics; M. J. Edwards, R. P. J. 
Town, and Rip Collins of Lawrence Livermore National Laboratory; D. B. Sinars of Sandia National 
Laboratory; S. H. Batha of Los Alamos National Laboratory; S. P. Obenschain of Naval Research 
Laboratory; R. D. Petrasso of Massachusetts Institute Technology; C. A. Back and J. D. Kilkenny of 
General Atomics; and N. Petta of Schafer Corporation. 

This material is based upon work supported by the Department of Energy National Nuclear 
Security Administration under Award Number DE-NA0001944, the University of Rochester, and the 
New York State Energy Research and Development Authority. The support of DOE does not 
constitute an endorsement by DOE of the views expressed in this article. 
  

9th International Conference on Inertial Fusion Sciences and Applications (IFSA 2015) IOP Publishing
Journal of Physics: Conference Series 717 (2016) 012001 doi:10.1088/1742-6596/717/1/012001

5



 
 
 
 
 
 

References 
[1] December 2012 National Nuclear Security Administration’s Path Forward to Achieving Ignition 

in the Inertial Confinement Fusion Program: Report to Congress Washington, DC: U.S. 
Department of Energy 

[2] Hurricane O A J. Phys.:Conf. Ser. this volume 
Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, 

Döppner T, Hinkel D E, Berzak Hopkins L F et al. 2014 Nature 506 343 
[3] Betti R, Christopherson A R, Spears B K, Bose A, Nora R, Woo K M, Howard J, Edwards M J 

and Sanz J J. Phys.:Conf. Ser. this volume 
Betti R, Christopherson A R, Spears B K, Nora R, Bose A, Howard J, Woo K M, Edwards M J 

and Sanz J 2015 Phys. Rev. Lett. 114 255003 
[4] Callahan D A J. Phys.:Conf. Ser. this volume 
[5] Hohenberger M, Radha P B, Myatt J F, LePape S, Marozas J A, Marshall F J, Michel D T, 

Regan S P, Seka W, Shvydky A et al. 2015 Phys. Plasmas 22 056308 
[6] Goncharov V N, Regan S P, Sangster T C, Betti R, Boehly T R, Bonino M J, Davis A, 

Edgell D H, Epstein R, Forrest C J et al. J. Phys.:Conf. Ser. this volume 
Goncharov V N, Sangster T C, Betti R, Boehly T R, Bonino M J, Collins T J B, Craxton R S, 

Delettrez J A, Edgell D H, Epstein R et al. 2014 Phys. Plasmas 21 056315 
[7] Froula D H, Goncharov V N, Kessler T J, Igumenshchev I V, Huang H, Kelly J H, Kosc T Z, 

Meyerhofer D D, Regan S P, Shvydky A et al. J. Phys.:Conf. Ser. this volume 
[8] D. B. Sinars, J. Phys.:Conf. Ser. this volume 

Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B and Vesey R A 
2014 Phys. Plasmas 21 072711 

[9] Eggert J H J. Phys.:Conf. Ser. this volume 
Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, 

Lazicki A E, Hamza A V et al. 2014 Nature 511 330 
Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, 

Braun D G, Swift D C et al. 2015 Phys. Rev. Lett. 115 075502 
[10] Huntington C M, Fiuza F, Ross J S, Zylstra A B, Drake R P, Froula D H, Gregori G, 

Kugland N L, Kuranz C C, Levy M C et al. 2015 Nat. Phys. 11 173 
[11] Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, 

Faussurier G, Fontes C J, Gilleron F et al. J. Phys.:Conf. Ser. this volume 
Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, 

Faussurier G, Fontes C J, Gilleron F et al. 2015 Nature 517 56 

9th International Conference on Inertial Fusion Sciences and Applications (IFSA 2015) IOP Publishing
Journal of Physics: Conference Series 717 (2016) 012001 doi:10.1088/1742-6596/717/1/012001

6


