
Longitudinal polarizability and enhancement factor of a 
tapered optical gold nanoantenna 

A R Gazizov1,2, S S Kharintsev1 and M Kh Salakhov1,2 
1 Kazan Federal University, 18 Kremlevskaya str., 420008 Kazan, Russian Federation 
2 Academy of Science of the Republic Tatarstan, 20 Bauman str., 420111 Kazan, 
Russian Federation 
 

E-mail: Almaz.Gazizov@kpfu.ru 

Abstract. This work focuses on the mechanism of electric field enhancement near a tapered 
optical antenna and the calculation of a complex field enhancement factor as a function of tip 
material, its curvature radius and cone angle. In this paper, an analytical model of longitudinal 
polarizability, taking into account retardation and dynamic polarization effects, is developed 
for evaluating the field enhancement factor. 

1.  Introduction  
Optical antennas mediate energy between propagating electromagnetic waves and non-propagating 
near-fields [1]. The antennas are designed for effective concentration of optical field energy below the 
Abbe's diffraction limit and increasing the efficiency of tip-sample interactions [2]. There are the 
optical antennas that have found wide application in various microscopic techniques such as tip-
enhanced Raman scattering (TERS) [3], antenna-assisted photoelectric cells [4], cancer treatment by 
the plasmonic probes [5], etc. 

Physical properties of a taper optical antenna are characterised by three parameters: radius of 
curvature  , cone angle   and dielectric function )(  [6]. Of the great importance is the field 
enhancement factor that depends on spatial distribution of induced currents. Despite the fact, that a lot 
of research groups worldwide have routinely used experimental tools of near-field microscopy and 
spectroscopy [7], some theoretical aspects in physics of the field enhancement still remain unsolved. 
In particular, it concerns a study of the field enhancement factor depending on antenna’s parameters 
[8]. 

In Ref [9] authors have used a simple numerical model in which the tip apex is substituted for an 
anisotropic sphere. In this paper, we propose an analytical model of the tip apex, which suits to be 
used in the infrared region. We calculate the longitudinal polarizability of the nanoantenna in the 
approximation of the tip apex to be a prolate spheroid. The dynamic polarization and radiative 
damping of electric oscillations are taken into account by integration of retarded fields of elementary 
dipoles over the spheroid volume. Analytical results are compared to FDTD-based numerical 
simulation. 

2.  Results and discussion  
Traditionally, the electric field around the tip of the nanoantenna is described with Green’s function 
formalism [10-13]. By replacing the nanoantenna with a metallic nanosphere with a curvature radius 
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of the tip apex   and the cone angle α the electric field in a tip-sample system can be written in the 
following form 
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where 0E  is an incident laser field,   is an angular frequency of the incident radiation, );,(0 0rrG


 

is a Green’s function in free space and eff  is an effective polarizability, that contains information on 

the parameters of the optical antenna. 
The effective polarizability of the small metallic sphere eff  in equation (1) reads as [14] 
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where ef  is a complex field enhancement factor, m  is a dielectric function of the sphere. The 

expression for ||,eff  originates from the requirement that the magnitude of the field at the surface of 

the tip is equal to the computationally calculated field set equal to 0Efe  [15]. 

Modeling and simulating the complex field enhancement factor at various wavelengths are shown 
in figure 1. The parameters of the tapered tip are 10  nm,  30 . For the numerical simulation 
the dielectric function of gold is approximated from Ref. [16] with a modified Drude model with a 

permittivity at infinite frequency of 5.7 , plasma frequency of 16101.38 p  rad/s and 

relaxation time of 30  fs. 
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Figure 1. The computationally simulated enhancement factor 
modulus and phase for the gold tapered nanoantenna. 

 
Since the simple sphere model does not provide anisotropy of the polarizability of the tapered 

optical antenna, we consider prolate spheroid as the model of the tip. Longitudinal polarizability of the 
metallic spheroidal particle in quasi-static approximation can be written as [17]: 
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where ||n   is a geometric depolarization factor of ellipsoid. The depolarization factor is determined by 

the following expression for the prolate spheroid [17]: 
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where e is the eccentricity of the ellipse. 
The quasi-static polarizability does not assume retardation processes such as dynamic polarization 

and self-radiation reaction in the taper nanoantenna, so the polarizability in equation (3) is not correct 
enough. To take these effects into account we use an idea that the electric field E inside the gold tip is 
a combination of the incident field E0 and depolarization field Edep. The polarization vector P can be 
expressed in these terms as [18]: 

 ))(1( dep00 EEP  . (5) 

The depolarization field is a sum of all the retarded dipolar fields dEdep generated by elementary 
dipoles )(d)(d rPrp V  of each volume element dV inside the volume of the ellipsoid. Let the 
origin of spherical coordinate system be located at one of the foci of the ellipsoid and Z-axis be 
aligned with its major axis. To find the depolarization field we should integrate the Z-component of 
the field ||,depdE  generated at the origin by elementary dipole )(d || rp  [18]: 
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where the retarded dipolar field generated by )(d || rp  has been expanded into a power-series of (kr) up 

to the power  k3 [19]. Integration over the volume of prolate spheroid yields: 
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Here, a and b is a major and a minor semi-axis of prolate spheroid respectively. Inserting this result 
into equation (5) and solving it for P, one obtains 
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We have obtained this result by using of an approximation of homogeneous field and polarization. 
As we see this polarizability in equation (9) differs from the polarizability of the quasi-static case in 
equation (3) by the denominator. The term proportional to k2 is referred to the dynamic polarization, 
because this term vanishes in the case of 0k  (static field). It also contributes only to the real part of 
the polarizability that corresponds to a change of effective depolarization factor of the spheroidal 
particle. This effect occurs due to the non-locality of the scattering process in time. The incident 
electromagnetic wave reaches different parts of the scatterer at different moments, so induced 
elementary dipoles are oscillating with different phases. Another reason for this term in the 
denominator is the excitation of electron plasma waves, which bound the field at the surface of the 
particle. 

The term proportional to k3 in the denominator is the radiation-damping correction of the quasi-
static polarizability. It occurs due to the accelerated motion of charges inside the volume of the 
nanoantenna. It accounts for damping of the dipole by radiative losses and results in broadening and 
the reduction in intensity of the resonance band for the large particle. Since the antenna is a mediator 
between propagating electromagnetic waves and inductive localized field, one cannot consider it as a 
small volume particle and the analysis must contain the contribution of these two effects. 

If we correct the result with the account of the retardation effect of the incident field analogous to 
the case of polarization of the sphere according to a power-series expansion of the Mie coefficients eBl 
[18], for the complex enhancement factor of the field, we obtain:  
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here p is the ellipse parameter equal to the curvature radius of the tip apex )1( 2eap  . The 

eccentricity of the ellipse expressed in terms of the cone angle reads as  2tan1e .  
Figure 2 shows a good agreement with the numerical simulation of the enhancement factor of the 

tapered antenna in the near-infrared region. Differences between both factors occur in the resonance 
band of the spheroidal particle. The tapered nanoantenna is a semi-infinite object and only its tip 
influences the polarizability. This means that surface plasmons excited at the tip apex are not strongly 
localized plasmons. This leads to a diffuse resonant band. In contrast, the spheroidal particle has a 
well-localized plasmon modes and a distinct resonance band. Hence, one cannot use this model to 
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describe the resonance effects. The neglected processes become appreciable at shorter wavelengths 
and the small particle approximation of the tip becomes incorrect. Nevertheless, resonance effects 
vanish outside the resonance band at longer wavelengths and the small particle approximation remains 
valid. 

 

 

Figure 2. The absolute value of the enhancement factor of a gold 
spheroidal particle. The dielectric function of gold was taken 

from the modified Drude model with same parameters. 
 

3.  Conclusion 
We have simulated the complex enhancement factor of the field for the gold tapered optical antenna at 
various wavelengths. We have proposed a prolate spheroid model to describe electric properties of the 
tip of the gold nanoantenna in the near infrared. This model accounts retardation of electric field by 
considering the dynamic polarization effect and radiative damping of electric oscillations in the 
framework of homogeneous polarization approximation. The model of polarizability remains valid at 
longer wavelengths. 
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