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Abstract. The notion of the Ito increment and the stochastic differential equation of the non-
Wiener type were introduced using the simple “natural” property of counting process. The 
properties of the stochastic differential and integral were demonstrated and clarified in a simple 
and original way. 

1. Introduction. SDE paradigm 
One of the primary methods for the world knowledge is the research into the system response to small 
(and not small) perturbations, in particular, the study of the system return to equilibrium or quasi-
equilibrium state after its removal from one of this or other condition of the kind. These are known as 
relaxation processes, and many problems of physics affect the relaxation of various kinds of excitation 
in the atomic, photonic, phonon and other systems. Similar processes can be found not only in 
physical, chemical, biological and social systems, but also in such seemingly distant sections as 
models of financial markets and others. 

In the study of the system response to small (and not small) perturbations and/or parameter 
variations virtually all familiar concepts keep emerging. Indeed, first it is necessary to parameterize 
the system under study and to identify independent and dependent parameters, such as )(xyy = . Then 
we consider their variations or increments y∆  and x∆ . In the case of small increments, they appear to 
be related by direct proportional dependence 

xxCxyxxyxy ∆≅−∆+≡∆ )()()()( 1 , 

and the value )(1 xC  is the characteristics of the studied system which can be defined experimentally 
and/or which is obedient to some laws. So, in fact, there arises a concept of derivative since 

)(')(1 xyxC =  for a «good» function )(xy . As a result, the basic laws are expressed by differential 
equations. For example, the position of the material point of mass m  at every point of time t  on the 
axis x  is determined as the coordinate x . Therefore we have the parameter dependence )(txx = . 
Parameter increments define concepts such as velocity xv  and acceleration xa  (projections of velocity 
and acceleration on the axis x ), ttvtx x ∆≅∆ )()( , ttatv xx ∆≅∆ )()( , and acceleration appears to be 
related to forces acting on the particle by Newton’s second law of motion 

∑= xx Fma . 
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Assuming that among the forces acting on the particle there can be either deterministic F  or random 
forces )(tX , we obtain the differential equation with random values  

 )()( tXFtxm += .  (1) 

To characterize a random force, we note that when a particle (material point) moves across the 
environment there arise occasional collisions with environment particles. Let all the environment 
particles be divided into groups numbered by the index i , such groups that for each collision of the 
material point concerned with the particles of the i -th group, a material point obtains a value 
increment of momentum kδ . Then it is convenient to rewrite the Newton's equation with a random 
force in the form of  

∑ δ∆δ+∆=∆
k

kkx tNtFtp ),()( , 

where xp  is the momentum of a material point, and ),( tN kδ∆  is the number of collisions of a material 
point with the k -th group particles of environment per time t∆ . Value ),( tN kδ∆  is the increment of 
some integer random value ),( tN kδ : ),(),()( tNttNtN kk δ−∆+δ=∆ .  

Another example is provided by any electrical circuit. For example, if we consider the definition of 
electric current, then the charge Q∆  passing over a time t∆  across the specified section of the 
conductor is ttItQ ∆=∆ )()( , where )(tI  is the electric current intensity. However, given that the 
charge is transferred by the elementary carriers of charge 0q , then  

 )()( 0 tNqtQ ∆=∆ , (2) 

where )(tN∆  is the number of elementary charge carriers passing over a time t∆  across the specified 
section of the conductor.  

If the flow of charged particles is quite rare, for example, when driving the elementary charge 
carriers in electron tubes and the current pulse caused by the charge hitting the anode is very short 
(small inductance), the equation for the current can be conveniently written as 

 )()()( tNttItI ∆β+∆α−=∆ , (3) 

where ∑∆=∆
i

i tNtN )()( . If the time points of charge hitting the anode are designated as values kt , 

the equation for the current can also be written as  

 ∑ −δβ+α−=
k

ktttItI )()()( . (4) 

The constant α  is related to the constant β  by the ratio 00 =β+α− q  since before and some time after 
the charge hitting the anode, the current caused by one elementary charge should be equal to zero  

β+α−=∆∑ 0)( qtI . 

The ratio 00 =β+α− q  remains valid for a more intense flux of electrons if the electrons enter the 
anode and affect it independently. As an example of equations (1)-(4) we will consider the features of 
stochastic differential equations (SDEs) at the elementary level and identify the basic concepts arising 
in this case.  

2. Peculiarities of SDEs and stochastic integrals. The Ito increment algebra 
We will discuss main differences of random terms of SDEs and stochastic integrals from the ordinary 
differential equations and the Riemann integrals  
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In the examples given above a random term was expressed as some value )(tN  whose increment   

)()()( tNttNtN −∆+=∆  

provided for an integer number of random events happening in a time interval t∆ . At the same time, it 
is evident that the main incremental rule is fulfilled – the sum of increments during shorter successive 
intervals is equal to the increment during the entire interval: 

)()()(
1

tNttNNtN
M

i
i −∆+=∆=∆ ∑

=

. 

Here the time interval ],[ ttt ∆+ , 0>∆t  is divided by points ttttttt M ∆+=<<<<= ...210  into M  
small subintervals 1−−=∆ iii ttt  и )()( 1−−=∆ iii tNtNN . Thus, in partitioning the time interval into 
shorter small subintervals, it is possible to reach the situation when iN∆  take only two values 0 and 1, 
which describes only two feasible options – whether some event has happened or not. 

Thus, when choosing a sufficiently short interval of time it∆ , we have an exact equality 

ii NN ∆=∆ 2 , because for shorter time intervals iN∆  can take only the values 0 and 1, and 002 =  and 
112 = . Such small time intervals and the corresponding increments of random process )(tN  are to be 

discussed as Ito increments dt  and )(tdN , respectively. Also, the terms differential or the Ito 
differential are often used. However, unlike the conventional analysis by which the differential 

)(xdf of function )(xf  indicates only that it is a linear (in increment of the argument) part of the 
increment of the function  

 ...))(())(()()( 3
3

2
2 +∆+∆+=∆ xxCxxCxdfxf ,  (5) 

the Ito differential  

 )()()( tNdttNtdN −+=   (6) 

suggests that the time interval dt  is that during this time only one event happens or does not happen, 
such as an electron hitting the anode. The possibility of simultaneous entrance of two electrons to the 
anode is neglected. 

So, the random process )(tN  consisting in counting the number of the events happened over the 
time t , otherwise the reading process, takes integer values, with increment (6) of the random process 
satisfying algebra 

 )()()( tdNtdNtdN = .  (7) 

This algebra determines the main difference between SDEs and integrals containing a random process 
)(tN  and the conventional differential and integral calculus.  

Recall that in terms of the function increment, the main point determining an ordinary differential 
and integral calculus is the fact that for small increments of the argument 1|| <<∆x  we have the 
following relation  

...|||||| 32 >>∆>>∆>>∆ xxx , 

so in the expansion of the increment )(xf∆  of a «good» function )(xf ,  

...))(()()( 2
21 +∆+∆=∆ xxCxxCxf  
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at 1|| <<∆x  only x∆  linear term )()( xdfxf ≈∆ matters, which is referred to as differential regardless 
of the value of the argument increment x∆ . Obviously, in the case of dependence of the "good" 
function f  on )(tN  all the terms should be taken into account in increment f∆   

 
).())](()1)(([)(...]))((''))(('[

...))())((('')())((')(())()(())((

!2
1

!1
1

2
!2

1
!1

1

tNtNftNftNtNftNf

tNtNftNtNftNftNtNftNf

∆−+=∆++=

=+∆+∆=−∆+=∆
  (8) 

Otherwise, while using increments 

 )())](()1)(([)(())()(())(( tdNtNftNftNftdNtNftNdf −+=−+= .  (9) 

This difference can be seen from the formula for differentiating a function product. For example,   

 
),()1)(2()()()(2

))(()()(2)())()(()()()( 222222

tdNtNtdNtdNtN
tdNtdNtNtNtdNtNtNdttNtdN

+=+=
=+=−+=−+=   (10) 

i.e. in contrast to the ordinary Leibniz formula, in differentiating the function product it is necessary to  
take into account increment products if these functions are random processes, or functions of random 
processes. 

Another feature of random function )(tN  occurs in the concept of a stochastic integral, i.e. an 
integral over increments of a stochastic process. Let us discuss how to understand the integral 

 ∫
t

t

tdNtN
0

)'()'( .  (11) 

It is natural to represent it as the limit of integral sums ∑∫
=→∆

∞→
∆=

M

i
ii

t
M

t

t

NtNtdNtN
i

10max

)'(lim)'()'(
0

, where 

time interval ],[ 0 tt , 0tt >  is divided by points tttttt M =<<<<= ...210  into M  small subintervals, 
)()( 1−−=∆ iii tNtNN , and points ],[' 1 iii ttt −∈ . 

As is known from the probability theory there are several concepts of limit for random values. We 
will note a curious fact that is independent of the concept of limit for random values. We will discuss 
how point 'it  within the partition interval should be chosen. In calculating the integrand at the left-
edge of partition intervals 

1' −= ii tt , Mi ,...,1= , 

then the resulting limit to integral sums will be designated as  

∑
=

−

→∆
∞→

∆=
M

i
ii

t
ML NtNS

i
1

1
0max

)(lim . 

It is not hard to understand that this limit will be different from the limit of Riemann sums, when the 
integrand is evaluated at the right edge of partition intervals 

).()(lim))((lim)(lim 0
10max1

1
0max10max

tNtNSNSNNtNNtNS L

M

i
i

t
ML

M

i
iii

t
M

M

i
ii

t
MR

iii

−+=∆+=∆∆+=∆= ∑∑∑
=→∆

∞→=
−

→∆
∞→=→∆

∞→
 

Stochastic integrals defined by the value of the integrand at the left-edge of partition intervals, with 
account of the relevant definition of the limit to integral comprise a class of the so-called stochastic Ito 
integrals. The choice of the left-edge of partition interval is useful for the so-called non-anticipating 
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functions when a would-be behaviour of a random process is statistically independent of its current 
state. For such functions )(tF  the mean value of the stochastic Ito integral has a simple representation  

∫∫ >><<>=<
t

t

t

t

tdNtFtdNtF
00

)'()'()'()'( . 

Selecting the Ito integral as a stochastic integral leads to the unconventional formulas of 
integration, with the differentiation formulas being consistent with integration, such as the value of 
(11) can be derived from (10) as  

))()(())()(()'()()'()'( 02
1

0
22
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2
12

2
1

000
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t
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−−−=−= ∫∫∫ . 

On the other hand, considering the integral as a limit of Riemann sums with values of the integrand 
at the left-edge of partition intervals, we have 
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This result does not depend on the concept of limit used. It demonstrates the consistency of algebraic 
relations (7) with the concept of stochastic Ito integral. Thus, stochastic differential equations and 
stochastic integrals (and related stochastic integral equations) are somewhat “two sides of the same 
coin”. And the concept of stochastic continuity will allow separating random functions from 
discontinuous deterministic functions, which can demonstrate the specified features at certain 
partitions. 

Without going too deep into the theory, it is natural to hypothesize the nature of the averaging of 
increment )(tdN . Being a good idealization, random process )(tN  should be in some sense 
homogeneous with the average value )(tdN  proportional to the time interval  

 dttdN λ>=< )( .  (12) 

Parameter λ  is to be referred to as velocity or intensity of a random process )(tN .  
Finally, if you give a standard definition for a limit for the partial sums of stochastic integral as the 

limit in the mean square, it is easy to prove that the integrals of non-anticipating functions take the 

following form 0')'()'(
0

=∫
t

t

dttdNtF , which allows adding an important ratio to the increment algebra 

(7) and (12) 

 0)( =dttdN .  (13) 

Moreover, the requirement for statistical independence )(tdN and )'(tdN  in the case of non-
overlapping time intervals dt  and 'dt  leads to  

 >><>=<< )'()()'()( tdNtdNtdNtdN , 'tt ≠ .  (14) 
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Finally, SDEs (4) can be written in terms of the increment of the random process )(tN  (with 
algebra increments (7) (12) - (14)) in the form 

 )()()( tdNdttItdI β+α−= .  (15) 

In terms of the algebra increments (7) (12) - (14) ordinary differential calculus is characterized by 
the algebra   

0=dtdt ,  

if value dt  is meant to be a rather small increment, i.e. the Ito increment. Then the formula for the Ito 
increment of function )(tf  takes on the following meaning 

dttfdttfdttftfdttftdf )('...))(('')(')()()( 2
!2

1 =++=−+= . 

3. SDEs and kinetic equations 
Equations (7) and (12)-(14) determine the so-called Poisson process that essentially defines the entire 
apparatus of the SDEs. Let us see how the SDEs are linked to kinetic equations of the system that 
underlie the dynamics of open systems. 

Let )(tf  be a continuously differential function, and ),( tnP  is the probability of the fact that by 
the time t  random value )(tN  has the meaning n . Then it is possible to introduce the average value 

>< ))(( tNf  in the form ∑
∞

=

>=<
0

),()())((
n

tnPnftNf . Let us consider equation (9): 

))}(()1)((){())(( tNftNftdNtNdf −+=  and average it by means of ),( tnP , 

>−+<λ>=< ))(()1)(())(( tNftNfdttNfd , >−+<λ=
>< ))(()1)(())(( tNftNf

dt
tNfd , 

∑∑∑∑
∞

=

∞

=

∞

=

∞

=

λ−−λ=−+λ=
∂

∂

0100
),()(),1()()},()(),()1({),()(

nnnn
tnPnftnPnftnPnftnPnf

t
tnPnf . 

Supposing )(tf  to be an arbitrary function with 0)0( =f , we derive the equation  

 )],(),1([),( tnPtnP
t

tnP
−−λ=

∂
∂ . (16) 

This equation is an example of the kinetic equation derived from the SDE.  
The solution of equation (16) by means of the generative function gives rise to the so-called 

Poisson distribution 

 
!

),(
n
tetnP

nn
t λ= λ− ,  (17) 

and value )(tN  is also called the Poisson process.  
The average value of the number of electrons at the anode n  and the variance of this 

number 222 nn −>=<σ  for the Poisson distribution prove to be equal to each other. These results are 
not difficult to obtain from differential algebra (7) and (12) - (14). Since  

∫=
t

tdNtN
0

)'()( , 

calculation of the average value and the variance of value )(tN  can be presented in the following way: 
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4. Conclusion 
The proposed approach to introducing SDEs differs from the conventional ones (see, for example, [1-
3]): one is immediately given an idea of non-Wiener type SDEs, which serve the basis for standard 
Wiener type SDEs derived by means of the central limit theorem [4]. Universality of stochastic 
processes underlying the SDEs is due to the central limit theorem and different time scales for 
deterministic and random terms. Their kinetic equations may contain fractional derivatives with 
respect to spatial variables, reflecting the self-similarity and fractal properties of the medium [4,5]. 
Moreover, the very random processes are the Markov processes. According to the approach 
considered above, non-Markov random processes with memory effect arise as the subordinated 
processes, and their kinetic equations contain terms with fractional time derivative [5]. However, the 
straightforward derivation of their kinetic equations similar to the ones considered in [4] for Markov 
processes is unknown to the author. 
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