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Abstract. It is shown that the regularization method with two kernels can resolve the double
shells of different kinds of atomic species. The method was tested for simulated and experimental
spectra. In both works, it provided successful results in separation of the double shells of different
atoms.

1. Introduction
The extended X-ray absorption fine structure (EXAFS) technique has been used to examine the
local structure of liquid and solid matters for several decades since the Fourier transformed skill
was utilized in this field in 1971.[1] It has been applied to the analysis of the local structure
of catalysis, amorphous and various functional materials. Recently, this technique has been
used for various advanced materials containing many kinds of atomic species. However, it was
very difficult to separate the double shells or the different atomic shells because it requires
severe constraints among fit parameters. It has been shown that the regularization method
provided higher R-space resolution for the double shell of monatomic materials,[2, 3], but there
were still limitations on the separation of different atomic shells because of the difficulties of
construction of the kernels for different atomic species. Nickel-titanium (so called nitinol) and
related compounds are such materials. Nitinol is widely used for dental and medical applications
because it exhibits an excellent shape memory effect.[4, 5]

Nitinol wire has a special nature with the super elastic and shape memory effect. It has the
same atomic ratio of Ni and Ti elements, and the crystalline structure is monoclinic at the low
temperature Martensite phase and cubic at the high temperature Austenite phase. The space
group of the structure at the Martensite phase is P21/m and the cell parameters are a = 2.898Å,

b = 4.108Å and c = 4.646Å with the clinic angle β = 97.78. From the cell parameters, the
atomic configuration was obtained by atomic bonds of RNi−T i = 2.53(3), 2.59(1), 2.60(3) and
3.28(1)Å and RNi−Ni = 2.61(2) and 2.90(2)Å with the coordinates in parenthesis. It is very
difficult to analyze the local structure with the conventional fit method for this material because
mixed atomic shells with two different atomic species are included in its EXAFS spectrum.

In this work, we applied the regularization method with two kernels containing different
atoms to the spectra of mixed shells to extract the shells in pair distribution functions. This
was done by a simulation test and experiments.

16th International Conference on X-ray Absorption Fine Structure (XAFS16) IOP Publishing
Journal of Physics: Conference Series 712 (2016) 012037 doi:10.1088/1742-6596/712/1/012037

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



2. Experiments
We performed EXAFS experiments for nitinol wire at 8C EXAFS beamline, Pohang light source
(PLS), with the electron storage performance of 3.0 GeV and 300 mA electron beam current.
The EXAFS experiments were conducted with the focused beam at Ni K-edge (Eo=7112eV).
The proper fluorescence rejection filters were employed with the Mn filter. The solid-state
detector (SSD) was installed at the detection site for the fluorescent measurements. The EXAFS
data were analyzed by the conventional method using IFEFFIT [6, 7] and the regularization
method.[2, 8, 9, 10]

3. Regularization method with two kernels of mixed shells
The EXAFS equation for multiple shells can be expressed by

χ(k) =
∑
j

∫
NjFj(k, rj)

kr2j
e
−

2rj
λ(k) gj(rj)(sin(2krj + ϕj(k))drj (1)

where j and gj(r) indicate each atomic shell and distribution of the shell, respectively and
Nj , Fj(k, rj), ϕj(k) represent the number of coordination, backscattering amplitude and phase
of each neighboring scatterer, respectively.

The equation is transformed to matrix form as

χ = Ag (2)

where A is given by the matrix obtained from the EXAFS components in Eq.1. The element
of matrix is calculated by the FEFF [11].

A = (A1, A2) (3)

The g vector consists of two vectors, g1 and g2,

g =

(
g1
g2

)
(4)

where A is (n,n) matrix, and A1, A2 are (n, n
2 ) matrixes which are the kernels of shell 1 and

2, respectively, and g1, g2 are n
2 vectors which are the distribution functions of shell 1 and 2,

respectively.
The pair distribution function of g1 and g2 can be obtained by the inverse procedure with

regularization from Eq.2. The process of regularization in EXAFS analysis was described in
detail elsewhere [3, 8]

4. Analysis of Simulated Spectrum
EXAFS spectra shown in Figure 1-(a) for Ni-Ti (green dash line), Ni-Ni (red dot line) and
Ni-(Ti,Ni) (black line) shells have been calculated by FEFF with the pair distribution functions
(indicated by ”model”) shown in Figure 1-(b) and (c), and the two spectra were merged to make
a double shell spectrum of different atomic species. Each EXAFS spectrum and the related
equations were prepared as a vector or a matrix form for the regularization procedure. Here, A
was (200 × 200) matrix, and A1 and A2 was (200 × 100) matrices.

The pair distribution functions of Ni-Ti and Ni-Ni pairs extracted from the simulated EXAFS
spectra are shown in Figure 1-(b) and (c). As shown in 1-(b), the pair distribution function
(green dash line) extracted from the Ni-Ti single shell spectrum almost fits the model (black
line) as expected. The pair distribution function (red dot line) obtained from the merged
spectrum deviated slightly from the model one but fits fairly. As shown in Figure 1-(c), the pair
distribution functions of Ni-Ni shells also fit well to the model one within an acceptable error
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Figure 1. Comparison of simulated EXAFS spectra, and the modeled and reconstructed pair
distribution functions. (a) EXAFS spectra for Ti shell only (green dash line), Ni shell only (red
dot line), mixed shells (black line). (b) The pair distribution functions of Ni-Ti pairs for Model
(black line), extracted from Ti single shell (green dash line), extracted from mixed shells (red
dot line), (c) The pair distribution function of Ni-Ni pair for model (black line), extracted from
Ni single shell (green line), extracted from mixed shells (red line).
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Figure 2. (a) Experimental EXAFS spectrum of nitinol wire and (b) its Fourier transform.

margin. From this simulation test, we see that the pair distribution functions of different kinds
of atomic shells can be obtained separately from the merge spectrum without any constraint.

5. Analysis of Experimental Spectrum
Nitinol is very suitable to test the separation of double shells of different atomic species. Figure 2-
(a) and (b) show the experimental chi(k) spectrum and the Fourier transformed spectra obtained
by experiment for nitinol wire.

As shown in Figure 2-(a) and (b), the EXAFS spectrum of nitinol wire looks almost like
single shell features. However, we know that the atomic arrangement around Ni central atoms in
nitinol consists of multiple shells of different atomic species. The experimental EXAFS spectrum
shown in Fig. 2-(a) was analyzed by the regularization method to extract the pair distribution
functions. The main peak in Figure 2-(b) within the window R = (1.73− 2.65)Å was filtered by
the inverse Fourier transform to extract chi(q) spectrum to be processed by the regularization
method.

Fig. 3-(a) and (b) show the obtained pair distributions of Ni-Ti and Ni-Ni shells, respectively,
and Fig. 3-(c) shows the fit of the filtered spectrum to the calculated spectrum by the
regularization method. The peak at R = 2.51Å in Fig. 3-(a) corresponds to the Ni-Ti bond at
R = 2.53Å in the crystallographic data. Also, the peak at R = 2.96Å in Fig. 3-(b) corresponds
to the Ni-Ni bond at R = 2.90Å in the crystallographic data. The other peaks near R = 3.25Å
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Figure 3. Pair distribution functions obtained by regularization method for Ni-Ti (a) and Ni-
Ni (b), and EXAFS spectra (c) filtered from the experimental spectrum (red dash) by inverse
Fourier transform and calculated (black solid line) with the pair distribution functions obtained
by the regularization method.

and R = 3.43Å are related to other bond lengths.
Fig. 3-(c) shows the chi(q) spectra obtained by the experiment (red dash) and calculated

with the pair distribution functions. As shown in Fig. 3-(c), the reconstructed spectrum fits
accordingly to the experimental one. This means that the pair distributions and the bond length
were estimated properly with the regularization method.

As pointed out, it was very difficult to separate the merged shells of different kinds of
atomic shells with the conventional fitting technique because the two shell fitting requires
many fit parameters exceeding the limitation of fit variables. However, as shown in Fig.3, the
regularization method provided an adequate separation of pair distribution functions of merged
shells of the two different kinds of atoms, but the bond length was not matched exactly to the
crystallographic data. This means that this method needs more sophisticated skills to provide
clearer structural information of the mixed shells of different atomic species.

6. Summary
In this work, we showed that the regularization method with two kernels can resolve the merged
shells of two different kinds of atoms. It was tested by simulation and experimental works. In
both works, the regularization method with two kernels provided successful results in separation
of the double shells.
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