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Abstract. Recent large-scale direct numerical simulations (DNS) of high-Reynolds number
(high-Re) turbulence, suggest that strong micro-scale tube-like vortices form clusters in localized
thin regions of space. However, to this date no thorough quantitative and statistical analysis of
the geometry of such vortical clusters has been conducted. This study is intended to generate
new statistical tools to study the shape and dynamics of these intense vorticity and strain
regions. We first propose a new method for locating and analysing the geometrical properties of
thresholded vortical clusters contained inside boxes of a given size. Second, we use this new tool
to investigate the natural presence of intense shear layers and their relevance as geometrical
features of high-Re homogeneous turbulence. This new method is applied to the DNS of
homogeneous incompressible turbulence with up to 4096% grid points, showing that the geometry
of high vorticity regions varies strongly depending on the threshold and on the size of the clusters.
In particular for sizes in the inertial range of scales and high thresholds, approximately layer-
like structures of vortices are extracted and visualized. Agreement of results with previous
observations and known features of turbulence supports the validity of the proposed method to
characterize the geometry of intense vorticity and strain regions in high-Re turbulence.

1. Introduction

Vorticity and strain structures are known not to be randomly distributed in turbulence. Rather,
they tend to be clustered in localized regions in space, where they are intense [1], and where the
local dynamics are believed to be strongly influenced by strong velocity gradients. It has been
suggested for some time [2] that these intense clusters tend to be located between large emptier
regions in which velocity gradients are relatively weak, and large energy-containing eddies are
dominant.

Recent theories [3] point at the possibility that these large empty regions play an important
role in the dynamics of intense clusters, as they entail the formation of stable shear layers
where intense vorticity is clustered and sheltered in thin layer-like regions of space. As the
Taylor micro-scale Reynolds number (Re)) is increased, these layers become more relevant due
to the inhibition of the Kelvin—Helmholtz mechanism responsible for their unstable behaviour
[3]. When Rey becomes large, this dynamical effect would imply the prevalence of layers as
the relevant geometry for vortex clusters. Visual detection and analysis of individual layers in
high- Re) DNS, with typical thickness of the order of the Taylor micro-scale, stands as evidence
to support this theory [5]. However, to the knowledge of the authors, no extensive statistical
research has been conducted to properly identify and characterize these layers, and it is unclear
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how relevant they are in high-Re) turbulence.

This work explores new statistical tools to study the geometrical distribution of intense
vorticity and strain regions. We propose a new method for locating and analysing these clusters
and their geometry through an extensive and quantitative statistical approach. Using this
new tool, we expect to elucidate whether intense shear layers are naturally present in isotropic
turbulence, and to what extent they represent a relevant geometric feature of high-Reynolds
number turbulence.

2. Method

The method is intended as a reliable way to qualitatively and quantitatively describe the
clustering geometry of intense vorticity regions. It is based on randomly probing the vorticity
field to find the core of high density regions through an iterative method. The structure of the
localized intense clusters is analysed using the inertia tensor of the set of thesholded points that
form the cluster. Similar methods have been used to describe the structure of galaxy clusters
[4].

The enstrophy field |w|(Z) is thresholded, and a field P(Z) is obtained such that,
P(7) =1 if |w|(Z) > e,

P(%) =0 if |w|(Z) < e,

where w’ is defined as the root-mean-square of the vorticity w? = €/v, € is the mean energy
dissipation rate per unit mass and v is the kinematic viscosity. The thresholded field is randomly
covered with cubic boxes of size §°. Each box, defining a domain B, is centred at &, and its
centre of gravity ¥, is computed as

oo =5 P @

where the sum extends to all points within the box. If Zy. is equal to the box centre Z’, the
point is marked as the centre of a local cluster. Otherwise, the centre of the box is shifted to the
centre of gravity of the thresholded field, Zy. — &', and the process is repeated to convergence.

After all the boxes converge, a set of local clusters is obtained. It is known that the
thresholded enstrophy field contains large empty regions, and this algorithm occasionally detects
some clusters that consist of a few isolated points within those empty regions. To avoid very
low-density clusters, all boxes with a mean volume fraction Vg = >z 5 P(Z)/6% lower than the
average volume fraction of P over the whole field are discarded. Moreover, since this method
might identify some clusters more than once, repeated clusters are also discarded. The number
of boxes used in our analysis is such that the total sum of their volume is eight times larger
than the volume of the domain. Around 20% of the trials result in repeated clusters, suggesting
that this number of boxes is large enough to properly sample the flow. The parameter 0 is
important, because it implicitly defines the maximum size of the structures contained in the
box. It is through this parameter that we control the size of the clusters that we detect.

For each individual box B, the geometry of the cluster can be studied through the inertia
tensor of the points within it,
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where primes denote the coordinates of the centre of each box, which is also the centre of gravity
of the distribution of P in the box. From the tensor, the three principal moments of inertial,
I; > Is > I3 > 0, can be obtained, as well as their respective inertia directions, ¥, v, U3.

These three quantities contain information on the shape and size of the cluster. The ratio
p = (I + I + I5)'/? /§ describes the ratio between the radius of inertia of P and the size of the
box, and indicates how well we have achieved our aim of isolating clusters of a given size. The
two aspect ratios €1 = I/I; and eo = I3/I1, such that 1 > e; > €9, define the geometry of the
structures. There are three ideal cases: €1 = es = 1 represents a perfect sphere; ¢ = €3 = 0.5
represents a perfectly thin circular pancake or layer; and €; = 1 and €3 = 0 represents an
infinitely thin tube.

3. Dataset

The vorticity fields used in the analysis are obtained from integrating the incompressible Navier—
Stokes equations in a triply periodic domain. The dataset contains flow fields from three
simulations of forced homogeneous isotropic turbulence at different Rey. Further details about
the simulations can be found in [6, 7]. For the lower-Reynolds number cases, enough time-
decorrelated fields have been used to obtain a proper statistical representation of the flow. For
the largest case, only one field is available but, given its high Reynolds number, the small
scales are sufficiently represented to have converged statistics. Characteristic parameters of the
simulations are presented in Table 1.

4. Results

When the algorithm is applied to the database mentioned above, it successfully detects a
considerable number of unique dense clusters from which the geometric parameters p, €; and
€9 are extracted. Between 10% and 107 different acceptable clusters are identified, enough for
properly converged statistics.

Table 1. Characteristic parameters of the DNS data. N is the number of Fourier modes per
dimension in each simulation, k,,q, the largest resolved wavenumber, n the Kolmogorov viscous
scale, and A the Taylor micro-scale. (Ngjei4s) is the number of independent fields used in the
statistics. The details of the DNS are described in Ref. [6] for N = 512,1024, and [7] for
N = 4096.

N Re)\ kmaxn L/77 )‘/77 Nfields

512 284 1.5 193 41.2 20
1024 384 1.5 386  43.9 10
4096 1131 1 2137 66.4 1
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Figure 1. Probability density functions of the size ratio p. ——, § = 19n; ———, § = T0n;
————— ,0=1367. (a) a=1. (b) a =4.

Figure 1 shows probability density functions (pdf) of the size ratio p. In general, they centre
about unity, showing that the boxes identify clusters of roughly the intended size, but it is also
clear that the higher thresholds in figure 1(b) contain a sub-population of clusters that are much
smaller than the box size.

Figure 2 presents two-dimensional joint pdfs of the aspect ratios (e1,€2). Only points inside
the triangles drawn in each figure are possible. ‘Spheres’ are at the top-right corner, ‘pancakes’
are at the bottom centre, and ‘tubes’ are at the top left. The geometry of the clusters changes
considerably with the threshold and with the clustering size. For low thresholds and/or large
box sizes, the clusters are spherical, with €; &~ e &~ 1. This reason is different in each case.
If the size 0 of the box is much larger than the size of a typical cluster, only the geometry of
the far field of intense vorticity is captured, which is distributed roughly homogeneously with
respect to the centre of the box. This can be appreciated in the tendency of pdfs to move
towards the top-right corner as J increases. On the other hand, the results for low thresholds
represent the geometry of the weak background enstrophy, which is less intermittent and more
evenly distributed in space than the intense structures.

The pdfs for small boxes and high « fall near €; ~ 1 and €5 ~ 0, where thin elongated shapes
are represented. This geometry is typical of single isolated strong vortical structures, which are
known to be representative features of the intense vorticity field in turbulence [2]. That these
two well-known features of the flow are identified by our algorithm gives us some assurance
about the general soundness of the method.

In between the two limits, larger clusters with increasing a move from isotropic shapes towards
intermediate aspect ratios. In this transition, the predominant cluster type moves towards a
flatter geometry, which could be interpreted as being closer to layers. Figure 2 shows that this
intermediate structures are more common for sizes in the inertial range of scales.

To reinforce the geometrical intuition of the shapes implied by the previous results, it is useful
to relate the principal moments of inertia to those of an ellipsoid with semi-axes (a > b > c).
As before, pair-wise aspect ratios can be defined as b = b/a and ¢ = ¢/a, which are univocally

related to (€1, €2),
- 1 _ 1/2 -1 1/2
b:<M) , 5:<w> , @)
1+e€ —e 1+e —e
For the typical values found in large boxes and high a (e; ~ 0.8 and €3 =~ 0.5), the aspect ratios
of the equivalent ellipsoid are b ~ 0.7 and ¢ ~ 0.5 which, although not strictly a thin layer, at
least suggests a tendency of the vorticity clusters towards this type of geometry.
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A typical vorticity cluster with this ‘layer-like’ geometry is shown in figure 3. It is formed
by tightly packed parallel vortices, and has (e1,€2) = (0.79,0.48) and (b,¢) = (0.73,0.45). The
three different views of this structure in figure 3 show that it is relatively wide in the direction
normal to U7, and confined to a thinner layer in the other two directions. The joint pdfs in figure
2 show that this type of geometry is relatively common for intermediate values of § and a at
the three Re) considered. Similar structures have been reported in [5].
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Figure 2. Isocountours at 0.6 and 0.3 of the maximum for the joint pdf of €; and e3. The size
of the clustering box is above each figure, in Taylor and Kolmogorov micro-scales. From top to
bottom: Rey) = 284, Re)y = 384 and Re) =1131. ———, a=1;, —— a = 2; —-—-- ,a=4
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Figure 3. Typical intense vorticity structure at Rey = 1131, box size § = 63n and threshold
« = 4. From left to right: view in the direction of the three main eigenvectors, blue v7, magenta
U and green v3. For this structure: ¢; = 0.79 and e; = 0.48. Lengths in Kolmogorov micro-scale
units.

5. Conclusions
We have presented a new method for the analysis of the geometry of intense vorticity. Dense
clusters of size ¢ are located via an iterative method applied on thresholded enstrophy fields.

Clusters are analysed by means of the inertia tensor of the thresholded set of high-intensity
points, and their geometry is studied considering the three principal inertia moments. An
extensive application of this algorithm has been conducted for three different Reynolds numbers,
using about 107 clusters extracted from our database of isotropic turbulence.

The method is shown to be capable of detecting both locally strong tubular vortices for
small clusters, and isotropically scattered vorticity for large ones, validating its ability to locate
and characterize the geometry of known vorticity structures. For intermediate sizes within the
inertial range of scales, a tendency of these clusters to form approximately layer-like objects
is observed. Some of these objects have been extracted from the flow, showing what could
be identified as potential shear layers. These results are in accordance with observations by
[5], and suggest that thick layer-like vorticity structures might be naturally present in isotropic
turbulence.

This analysis is related to the one in ref. [1], and produces similar results in that higher
thresholds give rise to vorticity structures that move from sheets to tubes. The two analyses
differ in that there was no explicit size control in [1], and that their clusters were geometrically
connected, while the present ones are, in principle, general sets of points.
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