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Abstract. We aim at a description of the logarithmic velocity profile of wall turbulence in
terms of unstable periodic orbits (UPOs) for plane Couette flow with a Smagorinsky-type eddy
viscosity model. We study the bifurcation structure with respect to the Smagorinsky constant,
arising from the gentle UPO reported by Kawahara and Kida [1] for the Navier-Stokes (NS)
equation. We find that the obtained UPOs in the large eddy simulation (LES) system connect
to those in the NS system, and that the gentle UPO in the LES system is an edge state branch
whose stable manifold separates LES turbulence from an LES ‘laminar’ state. As the Reynolds
number decreases this solution arises as the saddle solution of the saddle-node bifurcation.
Meanwhile, the mean and root-mean-square velocity profiles of the node solution of the LES
gentle UPO are in good agreement with those of LES turbulence.

1. Introduction
Near-wall turbulence can be found in daily life, which attracts many researchers’ interests in the
physical and engineering viewpoints, and its mean velocity has a well-known logarithmic profile
that is considered the result of its multi-scale structure. Although there is a vast number of
studies on near-wall turbulence, the dynamical origin of the logarithmic profile is not clear.
Plane Couette flow is one of the simplest shear flows, driven by parallel walls moving in
opposite directions. Since the linear streamwise velocity profile of the laminar solution is linearly
stable [2], there is no non-trivial solution bifurcating from the laminar one, and this problem is
considered to be a typical example of subcritical transition to turbulence. Hamilton et al. [3]
studied the minimal periodic domain where turbulence is sustained at low Reynolds numbers.
In this domain, which we call the minimal flow unit [4] from now on, turbulence exhibits a quasi-
periodic motion characterized by the formation and collapse of the streaks, i.e., the regeneration
cycle. Kawahara and Kida [1] found two unstable periodic orbits (UPOs) in the minimal flow
unit. Here we call them the vigorous and gentle UPOs. The vigorous UPO is embedded in
turbulent state, its motion is characterized by the regeneration cycle, and the profiles of the
mean and root-mean-square (RMS) velocities are similar to those of turbulence. On the other
hand, the gentle UPO is an edge state that lies on the basin boundary between turbulent and
laminar states. Other non-trivial solutions have been found, such as steady states [5, 6, 7],
UPOs embedded in low-Reynolds-number turbulence [8] and localized solutions [9, 10], but all
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the found solutions correspond to transitional or turbulent flows at low Reynolds numbers rather
than fully developed high-Reynolds-number turbulence.

Our aim is to find an explanation of developed wall turbulence in terms of dynamical
properties of invariant sets. In order to decrease the number of degrees of freedom, we introduce
the Smagorinsky-type eddy viscosity model. Large-eddy simulation (LES) can reproduce not
only the profile of the mean flow, but its dynamics are similar to Navier-Stokes (NS) turbulence.
In the case of NS system, the invariant solution found by Kawahara and Kida [1] describes
the dynamics of low-Reynolds-number NS turbulence, i.e. the regeneration cycle. When we
introduce the eddy-viscosity model, several questions arise: for example, whether or not there
are invariant solutions representing LES turbulence, and whether we can obtain descriptions
of developed turbulence using those solutions even the small-scale motion is modelled by an
eddy viscosity. Having the similar questions, Rawat et al. [11] showed an LES steady state
which represents the large-scale motion in plane Couette flow. Here we study whether the eddy
viscosity model changes the phase-space structure of the NS system, and explore the bifurcation
structure stemming from the gentle UPO with respect to the Smagorinsky constant.

In section 2 we explain the problem setting and show bifurcation structure arising from the
gentle UPO in section 3. The gentle UPO in the NS system continuously connects to the
LES system and the LES gentle UPO is the edge state at low Reynolds numbers. Those results
suggest that the eddy viscosity model does not violate a phase-space structure of the NS system.
As the Reynolds number decreases we find the saddle-node bifurcation, and the node solution
of the LES gentle UPO is embedded in turbulent state. The profiles of the mean and RMS
velocities of this solution are similar to those of turbulence, although its dynamics is simpler
than the regeneration cycle observed in turbulent state. Section 4 is devoted to the conclusion
and discussion.

2. Problem setting
We deal with the dimensionless LES equation with the Smagorinsky model [12, 13] given by

Ou; 1
8—12 + ujﬁjuz = —0;p + 28] { (E + Ve) S’L]} ) (1)
aiui = 0, (2)

where ¢ indicates time, (u1,u2,u3) = (u,v,w) is the velocity vector, and p is the kinematic
pressure. Here 0; = 0/0z; stands for the spacial derivative with respect to z; and S;; =
(Ojuj + Oju;)/2 is the strain rate tensor, where (x1,x2,23) = (z,y, 2) are the streamwise, wall-
normal and spanwise coordinates, respectively. Quantities are normalized with the half-distance
between walls, h, and the half-difference of the wall velocities, so that Re = Uh/v, where v is
the kinematic molecular viscosity. The dimensionless eddy viscosity v, is defined as

ve = {CsAy) fs(y)}?|S], 3)

where |S| = 1/25;;5;;. Here Cs denotes the Smagorinsky constant, whose value is usually in

the range of 0.1 < Cg < 0.15, the filter width A(y) = {A,A,(y)A,}'/3 is defined from the grid
spacings, and fs(y) = 1 —exp(—y™ /AT) is the van Driest damping function, with A™ = 25. The
T superscript denotes quantities rescaled with the friction velocity and the molecular viscosity.
We impose periodic boundary conditions in the streamwise and spanwise directions, and the
non-slip and impermeability conditions at the walls, u|y—+1 = +1 and v|y—4+1 = w|y—+1 = 0.
We set the streamwise and spanwise periods as the minimal flow unit, L, = 1.7557, L, = 1.27
(3, 4].
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We employ the Chebyshev-Fourier-Galerkin spectral method. For example, the wall-normal
velocity is expanded as

M-
v(z,y,2,t) Z Z Z O 1.m(t) exp(i(akz + Bl2)) ¥, (y), (4)

—Kl=—L m=0

where 0p ., (t) is the expansion coefficient, («,3) = (27/Lg,2mw/L.) denote fundamental
wavenumbers, and U,,(y) is the wall-normal Galerkin base defined by W¥,,(y) = Tn(y) —
%;”j;T +2(y) + m+3T +4(y), in terms of the m-th order Chebyshev polynomials, T}, (y). Here
K, L and M denote the truncation mode numbers, and we take the number of the grid points
as N > 3K +1,Ny =M +1,N, > 3L+ 1. In this paper, we set up the number of grid points
and the truncation mode numbers as (N, Ny, N,) = (24,33,24) and (K,L, M) = (7,32,7),
respectively. The time integration is carried out using the second-order Crank—Nicholson and
Adams—Bashforth methods. To obtain UPOs we employ the Newton-GMRES method. The

periodic orbit with the period T is the solution of the equation,

¢r(x) - =0, ()

where € RN(N = 2(2K + 1)(2L + 1)(M — 2) + 2(M — 1)) is the N-dimensional real vector
constructed by the real and imaginary parts of the expansion coefficients, and ¢ (x) denotes
the time-7T" map given by the time integration up to 7" from the initial condition x. Substituting
x =xg+ dx and T =Ty + 6T to (5) and linearizing the equations, we obtain

o¢
ox
where ¢ /0x represents the monodromy matrix of the time-7' map, I means the N x N identity

matrix, and f(zx) indicates the time derivative of . The linearized equation (6) has the N
equations in the NV + 1 unknowns. Then, we consider the additional condition [14],

(f (o), dx) =0, (7)

where (x,y) signifies the Euclidean inner product. To solve the equations (6) and (7), we carry
out the GMRES computation [15], which is performed in the Krylov subspace without any
inverse-matrix calculations. The stopping condition of the Newton iteration is

- I) dx + f(x)dT = —¢(xo)1, + o, (6)

Lo, To

1ed|
where ||z|| = (2, 2)'/? represents the Euclidean norm.

3. Bifurcation diagram of gentle UPO

Figure 1 shows the bifurcation structure arising from the gentle UPO reported by Kawahara
and Kida [1] where the vertical axis indicates the maximal value of the cross flow energy defined
by

v w? dV
Epp = max / TR ©)

In the case of C's = 0, which represents the NS system, the gentle UPO is a saddle solution
of the saddle-node bifurcation at Re = 236.1 [16]. As Cg increases the gentle UPO in the NS
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Figure 1. Bifurcation diagram of the gentle UPO. The vertical axis indicates the maximal value
of the cross flow energy in the period. The blue and red points represent the cases of Cs = 0
(NS system) and 0.1, respectively. In the cases of Re = 250 and 400 the saddle-node bifurcation
points are at Cg = 0.2362 and 0.5392, respectively.

system continuously connects with that in the LES system, and the branch finally reaches the
node solution of the gentle UPO in the NS system through the saddle-node bifurcation at the
finite C's. In the case of C's = 0.1, the gentle UPO appears from the saddle-node bifurcation
at Re = 238.4. We have confirmed that the LES gentle UPO is also an edge state using the
shooting method [17] (not shown). Hereafter we call the gentle UPO and the node solution G1
and G2, respectively.

In the case of Re = 400, the orbit projections on the total energy and the injection plane are
shown in figure 2. Here the total energy Fsp and the injection I are given by

w+ v+ w? dV
FE 1
3D / 2 oL,L.’ (10)
_1(d (u) d (u) (1)
2 dy y=+1 dy y=-1 ’

where ( ) denotes the wall-parallel averaging. The turbulent orbits and UPOs in the LES system
do not change a lot from the NS systems. Those results suggest that the eddy viscosity model
does not violate the phase-space structure of the NS system. Similar results are reported by
Rawat et al. [11] in the case of the steady states.

G2 is embedded in the turbulent state. The mean and RMS velocities of G2 are shown
in figure 3, while figure 4 presents the snapshot of the streamwise velocity. G2 has the three
symmetries,

¥ 0 (wyv,w)(x,y, 2,t) = (u,v, —w)(x + Ly /2,y, —2,t), (12)
Yo ¢ (u,v,w)(x,y, 2,t) = (—u, —v,w)(—x,—y,z + L,/2,t), (13)
Y3 0 (uyv,w)(z,y, 2,t) = (u,v,w)(x + Ly /2,y,2,t +T/2). (14)
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Figure 2. The projection on the total energy and the injection plane at Re = 400: (a) the LES
(Cs =0.1) and (b) the NS (Cs = 0) systems. The blue and red lines indicate G1 and G2, while
the gray thin line means the turbulent orbit. In the case of the LES system, the periods of G1
and G2 are 84.13 and 63.23, respectively.
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Figure 3. The mean velocity profiles of G2 at C's = 0.1 and Re = 400: (a) the mean and (b)

RMS velocities, where ( ) signifies the time and the wall-parallel averaging. The symbols and
lines denote the profiles of LES turbulence and G2, respectively.

The profiles of the mean and RMS velocities of G2 are similar to those of turbulence, but
the dynamics is characterized only by a meandering of the streaks, which is simpler than the
regeneration cycle, that is the formation and collapse of the low-speed streak found by Jiménez
and Moin [4] and Hamilton et al. [3].
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Figure 4. The time series of the streamwise velocity of G2 at Cg = 0.1, Re = 400. The left
and right columns show the plane y = 0 and the plane z = 3.14, respectively. The top, middle
and bottom rows show the snapshots at ¢t = 0,7/4 and T/2, respectively.

4. Conclusion and discussion

We have studied the bifurcation structure arising from the gentle UPO found by Kawahara and
Kida [1]. The gentle UPO is the edge state at Re = 400 in the NS system. We find that, as
Cs increases, the gentle UPO of the NS system connects with the LES branch which reaches
the node solution of the NS system through a saddle-node bifurcation at a finite Smagorinsky
constant. In addition, the saddle solution in the LES system is also an edge state. Those results
suggest that the eddy viscosity model would not violate the phase-space structure of the NS
systems. Moreover the node solution is embedded in the turbulent state, and the profiles of the
mean and RMS velocities are similar to those of turbulence. On the other hand, the dynamics
of the node solution is represented only by a meandering motion of the streaks, which is simpler
than the regeneration cycle. It should be noted that Kawahara and Kida [1] found a different
vigorous UPO that describes the statistical and dynamical properties of turbulence. Since the
magnitude of the eddy viscosity is small at the low Reynolds number Re = 400 as shown in
figure A2 in the appendix, the LES contribution is not significant. At higher Reynolds numbers
we are now tracing the corresponding LES branches to the node solution and the vigorous
solution, which could represent high-Reynolds-number turbulence.
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It is also an interesting problem to characterize the nonlinear stability of the laminar state
at high Reynolds number in terms of a periodic edge state and its stable/unstable manifolds.
Peixinho and Mullin [18] examined experimentally the transition to turbulence in pipe flow, and
found that the minimal amplitude of the disturbance leading to turbulence changes as Re™™
with m ~ 1.3—1.5. Avila et al. [20] studied a transiently turbulent state, the so-called puff, and
its characteristic lifetime. They found that the lifetime of this turbulent state is finite, which
implies that perhaps the turbulent state at high Reynolds numbers might be a chaotic saddle in
the dynamical systems theory. van Veen and Kawahara [19] showed the existence of the chaotic
saddle using the homoclinic tangle arising from the gentle UPO at low Reynolds numbers.
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Appendix A. Statistical properties of LES turbulence

Here we briefly show the statistical properties of LES turbulence (C's = 0.1) at high Reynolds
numbers in the minimal flow unit, (L., L,) = (1.7557, 1.27), to check the validity of the eddy
viscosity model. Time averaging is carried out integrating up to 7T, = 4000, after discarding an
initial transient up to 7, = 2000.

Figure Al shows the mean streamwise velocity. As we increase the Reynolds number with
a fixed number of grid points, (N, Ny, N,) = (24,33,24) the mean streamwise velocity moves
closer to the laminar profile. On the other hand, if we change the number of the grid points for
each Reynolds number, the mean velocity profile reproduces the same Karmén constant of NS
turbulence, xk =~ 0.41 shown by Pirozzoli et al. [21]. It should be noted that because of the small
domain size of and low Reynolds number of the present LES, one should expect deviations from
the logarithmic profile of the NS system in the overlap region. In fact, we have confirmed a
good agreement between the profile of the mean streamwise velocity of the LES and NS systems
in the case of (L., L,) = (2, 7) (not shown). As the Reynolds number and the number of the
grid points increase, the filter width near the wall changes as A(1)" ~ 1.88,6.31,11.0 and 9.63
for Re = 400,2000,5000 and 10000, respectively. Figure Al then suggests that to obtain an
approximately constant Kérman constant the grid should be taken so as to satisfy A(1)™ < 10.
Taking into account the numerical costs to obtain UPOs using the Newton method we anticipate
that the practical limitation of the Reynolds number using present resources would be in the
range of Re < 5000. -

Figure A2 shows the ratio (r.)/Re™! of the mean eddy viscosity to the kinematic molecular
one. As the Reynolds number increases the ratio increases monotonically except for the case
of Re = 10000 where we not only change the number of wall-normal grid points but also the
wall-parallel one. Even at high Reynolds numbers the order of magnitude is moderate, less than
unity. This implies that the eddy viscosity model might not significantly change the energy
dissipation mechanism of the NS system. It should be noted that since the eddy viscosity is
small at Re = 400, the LES contribution is unimportant at this low Reynolds number.
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Figure Al. Mean streamwise velocity at several Reynolds numbers: ® , Re = 400; 4, 2000; X,
5000; O, 10000. (a) The number of the grid points is fixed to (N, Ny, N.) = (24,33,24). (b)
Grid increases with the Reynolds number. (N, N,, N.) = (24,33,24),(24,37,24), (24,49, 24)
and (48, 81,48), where ht = 33.7,122, 258 and 503, respectively. The gray line shows the result
of a DNS of plane Couette flow in a periodic domain (L, L,) = (187,87) at h™ = 550 [22] We
note that the profile at Re = 400 of (b) was shown in figure 3-(a) in outer scaling.
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Figure A2. The ratio of the mean eddy viscosity to the kinematic molecular viscosity. The
definition of symbols is the same as in figure Al.
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