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Abstract. It is an exciting possibility that the QCD critical point can be found in
ultrarelativistic heavy-ion collision experiments (HICs). While quantities such as some event-
by-event moments of specific observables should display strong non-monotonic behavior near
the critical point and could, hence, be used as signatures of criticality, it is not clear that
this behavior could effectively be observed in the highly non-ideal scenario of HICs. We here
employ Monte Carlo simulations to test second-order moments of pion observables as possible
signatures of the critical point while taking into account some realistic ingredients, similar to
the ones found in HICs. We make use of simplified models to introduce spurious contributions
and dynamical effects.

1. Introduction

The QCD chiral phase diagram might present a second-order critical endpoint (CEP) accessible
to current heavy-ion collision experiments (HICs) [1, 2, 3, 4, 5]. The experimental discovery of
such a feature of the QCD phase diagram would be of huge importance and a large amount of
literature has been dedicated to the study of the effects of the CEP in experimentally accessible
observables. Among possible signatures for searching the CEP, it has been proposed that critical
fluctuations in its neighborhood could have a large impact upon moments of the event-by-event
distribution of observables [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. This would result in a non-
monotonic increase of these moments as experimental conditions probe this region of the QCD
phase diagram.

However, it is not at all obvious that the non-monotonic increase in these quantities could be
visible in the environment of the small amount of plasma produced in HICs [16, 17, 18], especially
if effects from dynamics and spurious contributions are considered. In the following, we study
the behavior of second-order moments of pions near criticality within a simplified model [19].
In order to introduce some of the expected experimental limitations of a real experiments, we
apply Monte Carlo techniques.

2. Effective theory

Our choice of approach for studying the critical behavior of the observables of interest is taken
from Refs. [6, 8]. In this context, the chiral field ¢ is used as an order parameter for the chiral
phase transition. In the second-order CEP, its mass, m,, is expected to vanish, thus giving
rise to strong long-wavelength fluctuations and the divergence of the corresponding correlation
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length £ ~ 1/m,. In order to describe this behavior, a classical treatment is applied along with
a homogeneous approximation o(z) ~ og. The probability distribution for oq is given by

Plog) = e~ M0l (1)
where T is the temperature and the effective potential ) is expanded in powers of oy,
1
Qlog] =V B m2 o2 + O(0}). (2)

Interaction with pions is only introduced as a shift in the pion mass squared, m2,

Ling =G oot -7+ O(¢"), (3)
or equivalently,
m2 =m®2 4 2@ oy, (4)

where a value of G =~ 300 MeV near the CEP is taken from [6].

Egs. (1), (2) and (4) yield a probability distribution for m2. This distribution turns out
to be Gaussian within the present approximations, with a width 2G ¢ /T/V, where V is the
system volume. This picture enables us to have a grasp on critical correlations among pions
while essentially regarding them as free particles. As the pion mass fluctuates, it collectively
affects the pion multiplicity and transverse momentum distribution, generating event-by-event

correlations among observables. In particular, it can be shown that

2
any = G L L 1) 1+ g+ 0(6m2)") o)
Wp W

where k& and p denote distinct (free) one-particle pionic states, of energy w, and wj and
occupation numbers n, and ny, respectively, and f, = (ewr/T — 1)~!. The correlation in Eq. (5)
can be used to calculate critical contributions to second-order moments of observables of pions.
Its quadratic dependence in ¢ indicates an enhancement of these contributions as the CEP is
approached and £ increases.

The picture outlined above enables the construction of a very simple Monte Carlo algorithm
for generating distributions of pions displaying the desired critical correlations [19]:

(i) draw m?2 from a Gaussian distribution of width 2G &\/T/V ;

(i1) for each mode p, draw an occupation number n, according to the
Boltzmann factor e=«»me/T.

In order to have a finite number of modes, it is necessary to impose boundary conditions. We
impose Dirichlet boundary conditions on a sphere, partially introducing finite-size effects into
our treatment.

3. Heavy-ion collisions
Since ¢ increases near the CEP, Eq. (5) shows that second-order moments of pions should exhibit
non-monotonic behavior as the freeze-out conditions of the plasma formed in HICs approach and
depart from its neighborhood. Our goal is to test whether this behavior is sufficiently strong to
be experimentally detected in realistic conditions, providing signatures of the critical point.
Our simulations aim at reproducing freeze-out conditions from the RHIC Beam Energy Scan
program. We choose parameters inspired on results from STAR regarding Au + Awu collisions
at center-of-mass energy /sy n = 7.7 GeV in the 0 — 5% centrality class and pretend the CEP
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is near the corresponding freeze-out parameters. For this centrality and this center-of-mass
energy, the freeze-out temperature and plasma radius are in the ranges T, ~ 110 — 150 MeV
and Ry, ~ 6 — 8 fm, taking different values for chemical and kinetic freeze-out [20, 21]. We
take T'= 130 MeV and R = 6.8 fm and restrict our analysis to pions of transverse momentum
pr < 1 GeV and pseudo-rapidity in the window |y| < 0.5. As to introduce some realism, we
include limitations in the growth of £ due to critical dynamics and fluctuations of the freeze-out
parameters [19].

3.1. Fluctuations of freeze-out parameters

The experimental study of event-by-event correlations implies a sample of events. However, in
HICs, it is not at all possible to prepare or post-select identical events. While centrality binning
(and possibly other kinds of post-selection) can be used to reduce this effect, experimental
events in a given sample will always vary in initial conditions and evolution, so that freeze-out
parameters will inevitably fluctuate among them. Since these fluctuations affect the resulting
distribution of particles as a whole, they can generate collective fluctuations that provide a
background to critical fluctuations in this kind of analysis.

The final volume and geometry of the plasma, for instance, depend on initial conditions and
should fluctuate accordingly. As a simplified model, we consider the colliding nuclei as disks,
due to Lorentz contraction, and suppose the plasma to be a sphere of volume proportional to
the intersection area between the nuclei at the instant of collision. A probability distribution
for the freeze-out radius Ry, is then obtained by considering a linear probability distribution
for the impact parameter P(b) o< b. The intersection area can be easily found as a function of
the impact parameter b and the nuclear radius Ry,

_ b b?
A(b,Ry) = 2R% cos ™! <2RN> —b\/ R%, — 1 (6)

while the proportionality constant can be found by fixing the plasma radius for a given centrality
class (we choose Ry, = 6.8 fm for 0 — 5% centrality) [19]. Our estimate of Ry is the measured
parameter 7o = 6.38 fm of the Woods-Saxon nuclear density profile for the gold nucleus [22, 23].

While lacking a simplified model for temperature fluctuations and its relation to volume
fluctuations, we just assume the freeze-out temperature to fluctuate according to a Gaussian
distribution of 5% width, which we believe to be a moderate choice. Since pions are not directly
sensitive to the baryonic chemical potential up, fluctuations of its freeze-out value are not taken
into account.

3.2. Critical slowing down

As explicit in Eq. (5), second order correlations exhibit an approximately quadratic dependence
on ¢. While in equilibrium and in the thermodynamic limit & — oo as the CEP is approached,
this cannot be the case for a real system with finite size and lifetime. Since ¢ should not grow
arbitrarily fast, as its equilibrium value increases towards infinity, so do the equilibration times,
in what is known as critical slowing down [24]. This effect can significantly affect the proposed
signatures of criticality [25].

In order to take this limitation into account, we use the treatment of Ref. [25] to find the time-
dependence of ¢ near the CEP, including several simplifying approximations and assumptions.
With the purpose of using the Ising universality class of QCD, the system is considered to be
in equilibrium until a sufficiently large value &, of the correlation length is reached, so that
universality arguments apply. The system is also taken to cool down at a constant rate d7'/dt,
at constant baryonic chemical potential and exactly over the critical point, while the reduced
temperature is taken to be proportional to the Ising reduced magnetic field when mapping the
problem to the Ising Model [19].
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Figure 1. Evolution of the
correlation length & in the most
favorable scenario, with A =

0.6 , , , . . Apez = 3.2.  Its value never
105 0 05 1 15 2 exceeds 2.2 &y, being most likely
under 1.8 &y, depending on at which

t/7 instant ¢ freeze-out occurs.

Besides universal parameters and the dimensionless constant A, there are two necessary scales
that determine ¢ as a function of time ¢: the cooling time 7 := %, where T is the critical
temperature and Tj is the temperature above which the treatment can be applied, and the initial
correlation length &y [19]. Since & > 1/Tg, we take {n = 1/120 MeV = 1.6 fm and, based on
two-pion interferometry results for the lifetime of the system, we estimate the time scale between
reaching £y and crossing the critical point as 7 = 5.5 fm [21]. The longer the correlation length
has to respond to criticality and the smaller its initial value, the higher the factor £(t)/&p can
get. We therefore consider these values to be very optimistic. While the dimensionless constant
A is not estimated in Ref [25], it can be constrained by asking that the correlation length never
increases above the speed of light. The greater its value, the faster £ can grow. It can thus be
shown that A < A4, = 3.2 [19].

Fig. 1 shows &(t) for A = A4, within this approach, with the system crossing the CEP at
t = 0. It is clear that ¢ should not grow by a factor larger than 2.2, reaching up to ~ 3.5 fm.
Since this value is smaller than the typical system radius, we believe dynamical effects to be
more restraining than the finite size of the system.

4. Results

Finally, we make simulations of 10% events for various values of &, ranging from & = 1.6 fm to
2.2 x 1.6 fm = 3.5 fm, and calculate, for each of them, the second-order moments ((AN)?)
and ((Apr)?) for charged pions, where N is the particle multiplicity and pr is the mean
transverse momentum among particles of a given event [19]. These moments are normalized
by the appropriate power of (N) to cancel out system-size dependence.

Our results are shown in Fig. 2, as a function of the combination §>2< = (G €)%, We choose
to display them as relative variations with respect to the values for £ = 1.6 fm, revealing that
the tested signatures can increase up to ~ 10% in the case of ((AN)?). A larger signal could be
found for the mixed moment (AN Apr). However, since chemical and kinetic freeze-out occur
separately, there should be no correlation between N and pr, so we believe this result to be
artificial.

It is also interesting to find how these signatures depend on the instant of freeze-out. For
that purpose, a linear fit can be made in Fig. 2 to extract the dependence of ((AN)2)/{((AN)?)g
in §>2<, which can be used along with the time dependence £(t) obtained in Section 3.2. The
result is shown in Fig. 3, with the time variable replaced by the difference between the critical
and the freeze-out temperatures using Ty — Tr = 44 MeV. It should not be interpreted as the
non-monotonic behavior expected as the beam energy of an experiment is varied, but rather as



XIII International Workshop on Hadron Physics IOP Publishing

Journal of Physics: Conference Series 706 (2016) 052024 doi:10.1088/1742-6596/706/5/052024
¢ (fm)
1.6 2.1 25 29 33 35
0.1 T T t t T t T
[A— Q =N i
0.08 | =& Q@ =pr i -
— 0.06 : -
—~|] = 0.04 ¢ S i
& ol
SIS o002} P : . . |
dia 5 Figure 2. Signal as a function
T~ O S T of £>2< and &, in proportion to the
5 reference value, taken at £ = 1.6 fm.
-0.02 ] The variances of the charged pion
0.04 f . . . . . . multiplicity, N, and the average
' 0 5 10 15 20 25 30 transverse momentum of charged
9 pions for a single event, pp, are
X shown.
1.]. T T T T T T T
A=A e
- A
s LO8 ¢ A s i
Z,
4 1.06 + .
<
& 1.04 + - . . .
g Figure 3. Behavior of the signal
A 102 L | to baseline ratio of the variance of
- ' [ N as the freeze-out temperature
1 , ......... | . N is varied over a cooling trajectory

_40 .‘-_-20 0 20 40 60 8'0 100 which crosses the CEP at T =
Tp, for different choices of the
parameter A.

TE — Tf.o. (MeV)

displaying the influence of the amount by which the system cools before freeze-out given that
cooling occurs over the critical point. Different values of the parameter A are used and one
should bear in mind that changing it has the same effect of changing the cooling time 7 by the
same factor.

5. Final remarks

In this work, we have analyzed second-order event-by-event moments of pions as signatures
of the chiral critical point in HICs. It should be regarded as a first step towards a more
realistic understanding of the impact of experimental limitations upon signals of the CEP in
HICs. As such, it can and should be enhanced in many ways such as by including contributions
from resonance decays, re-scatering and hydrodynamic flow. Since we have assumed perfect
equilibrium (apart from Section 3.2), used very simple models and chosen optimistic values
whenever estimates were necessary, our results should be regarded as limiting how optimistic
one could be about the performance of tested signatures [19]. Results for higher-order moments
and moments of protons, which should both yield stronger signatures [8, 9], are left for future
developments.
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