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Abstract. In 1918 Joseph Lense and Hans Thirring, discovered the gravitomagnetic effect
when studied solutions to the Einstein field equations using the weak field and slow motion
approximation of rotating systems. They noted that when a body falls towards a massive
object in rotation it feels a force perpendicular to its movement. The equations that they
obtained were similar to Maxwell’s equations of electromagnetism, now known as Maxwell’s
equations for gravitomagnetism. Some authors affirm that the gravitomagnetic effect can cause
precession then in this paper we calculate the precession that gravitomagnetic effect cause in
Mercury’s perihelion advance. To make this we calculate the field between dipoles to measure
the influence that the Sun has on Mercury, taking into account the gravitomagnetic field that
the Sun and Mercury produces when they rotate around themselves. In addition, we calculate
the ratio of the dipole force (of all solar system planet’s) and the Newton’s gravitational force
to see how much is smaller.

1. Introduction
In 1918, Joseph Lense and Hans Thirring found gravitomagnetism (GM), while studying
solutions to the Einstein field equations, using the weak field approximation for systems with
rotation. They noted that when a body falls, towards a rotating massive object, it feels a
perpendicular force to its movement. The equations that they obtained were similar to Maxwell’s
equations of electromagnetism, now known as Maxwell’s equations for GM presented in (1), (2),
(3) and (4)

∇ · ~g = −4πGρG (1)

∇ ·~b = 0 (2)

∇× ~g = −1

c

∂~b

∂t
(3)

∇×~b =
1

c

(
−4πG~JG +

∂~g

∂t

)
, (4)

where c is the speed of light in vacuum, G is the gravitational constant, ~g refers to gravito-
electric field and ~b gravito-magnetic field.
The GM is expected by Einstein’s theory of General Relativity. When a planet, star, black hole
or something massive rotates, it drags space-time around it, this action is call “frame dragging”.
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Einstein theory shows that all gravitational forces correspond to the curvature of space-time,
the twist here is GM.
However, when the GM can cause some effects? Some researchers[4],[5] and [8] say that it can
cause precession orbiting satellites, and this would make a gyroscope (for example, placed in
Earth orbit) swing. Some NASA researchers led by physicist Ignazio Ciufolini tried to detect
equatorial bulge pulls satellites as well, which causes a precession billions of times greater than
GM. Ciufolini and their researchers then had to subtract that effect, which then left the doubt
whether the precision was enough to detect the GM. Many scientists accept these results, however
others are skeptical.
In fact, there are some satellites in Earth’s orbit to study about the gravitomagnetic precession[1]
and [2], for this study they used the Laser Geodynamic Satellites, the LAGEOS and LAGEOS II.
The researchers found a small precess (about 5 per cent) consistent with GM. Gravitomagnetic
effects as can be seen in[1],[2] and [5] can be theoretically measured for some systems, such as
black holes, super massive stars and even rotation curve of galaxies.
Bearing in mind the gravitomagnetic concepts and formalism, we calculate the field between
two dipoles to measure the influence that the Sun has on Mercury, taking into account the
gravitomagnetic field that the Sun and Mercury produces to rotate around themselves, and
whether the addition of this force influence the perihelion advance of Mercury. Moreover, we
calculate the ratio of the dipole force (of all solar system planet’s) and the Newton’s gravitational
force to see how much is smaller.

2. Dipole moment of a Planet
In this section, we will calculate the dipole moment equation of a planet, to do this we will
consider a sphere spinning in your own axis and we used the expression for dipole moment taken
from[7] and doing appropriate modifications to the gravitomagnetic formalism, we have:

~µ =
1

2c

∫
~r × ~Jd3x,

And
J = ρωr sin θ, (5)

But,
v = ωr sin θ,

This expression becomes:

~µ =

∫
(xJ cosφêz + yJ sinφêz − zJ sinφêy − zJ cosφêx)d3x, (6)

Applying coordinate transformation and, replacing (5) in (6), we have:

~µ =
ρω

2c

(
r5

5

4π

3
êz +

r5

5

4π

3
êz

)
=
ρωr54π

15c
êz.

But, into the case of homogeneous sphere

ρ =
M

4
3πr

3
,

Replacing ρ and simplifying, the expression becomes:

~µ =

√
GMwr2

5c
êz. (7)

Where G is the gravitational constant, c is the speed of light, M is the planet mass, r is the
planet radius and w is the angular velocity of the planet.

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 052014 doi:10.1088/1742-6596/706/5/052014

2



3. Sun Gravitomagnetic field
The expression below is the Sun’s gravitomagnetic dipole field produced by its mass in rotation,
this expression was taken from Jackson[7] and gives the value of gravitomagnetic field outside
of the Sun:

~B� =
3(~µ� · ~R)~R−R2m

R5
.

In spherical coordinates, with ~µ� = µ�~ez, this equation can be rewritten as

~B� =
µ�
R3

(2 cos θêr + sin θêθ). (8)

Where ~µ� is the Sun dipole moment and ~R is the position vector from the Sun to the planet.

4. Potential and interaction force between dipoles
Now in this section, we can calculate the gravitomagnetic potential to finally find the expression
for the interaction force between the dipoles. For this we will use the expression for the potential
energy of a dipole in a gravitomagnetic field ~B

U = −(~µp · ~B�),

where ~µp is the planet’s dipole moment. Now working with

~µp =

√
GMpwpr

2
p

5c
êz = Kpêz,

and

~µ� =

√
GM�W�r

2
�

5c
êz = K�êz,

the potential reads

U = −KpK�
R3

(2 cos2 θ − sin2 θ).

The force between dipoles is given by:

Fd = −∇U =
3KpK�
R4

[(3 sin2 θ − 6 cos2 θ)êr + (2 sin θ cos θ + 4 cos θ sin θ)êθ].

Considering that θ = π
2 , we have that the force of the interaction between the dipoles is:

Fd =
3KpK�
R4

êr.

Therefore, the force have dependence in the radial component. Now, we are in position to
calculate the ratio between the gravitomagnetic gravitational forces.
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Table 1. Ratio between the dipole force and the gravitational for the solar system planets.
Planet Fd/Fgrav

Mercury 3, 7931× 10−10

Venus 2, 6149× 10−10

Earth 9, 3934× 10−11

Mars 6, 0768× 10−12

Jupiter 3, 6582× 10−11

Saturn 3, 1088× 10−12

Uranus 4, 8549× 10−14

Neptune 9, 4391× 10−15

As we can see in Tab.(1), the gravitomagnetic force is much smaller than gravitational force.

5. The orbit equation
In this section, we will calculate the orbit equation starting from the Lagrangian:

L = T − V. (9)

In our case the potential energy will be an effective potential with one term coming from the
gravitational potential and the other from the dipole’s potential energy

Veff = −k
r

+
d

r3
.

Here r is the distance from the Sun to the planet, k = GM�Mp and d is strength of the potential
energy of the dipoles and m the mass of the planet. Replacing this potential in Eq.(9) results

L =
1

2
mv2r +

l2

2mr2
−
(
k

r
+

d

r3

)
,

where l is the angular momentum of the planet. Doing some manipulations, using r = 1/u we
reach:

d2u

dθ2
+ u =

mk

l2
+

3dmu2

l2
. (10)

Notice that unless the term 3dmu2/l2 the equation corresponds to a Newtonian equation for
the orbit of a particle test in a gravitational field produced by a point mass body. So, this term
corresponds to a perturbation when compared to mk/l2.

In the Tab.(1) we have the comparison between the last two terms of the Eq.(10), for all
solar system planets. As we can see the Mercury is the planet subjected to the strongest field,
according to the data

rorbital = 5,79× 1010 m,

period = 7,60× 106 s.

Thus,
3dmu2

mk
= 3,79× 10−10.

This shows clearly that 3dmu2/l2 is a correction term to mk/l2. The Eq.(10) can be put in the
form:

d2u

dθ2
+ u =

mk

l2
+ εu2, (11)
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where ε = 3dm/l2 and solved perturbatively [12], choose:

u =
∞∑
k=0

εkuk = εkuk. Einstein summation convention implied,

substitute this expansion in the Eq.(11), given

εk
d2uk
dθ2

+ εkuk =
mk

l2
+ ε(εkuk)

2.

and collect terms with the same power of ε. The zero order of perturbation is the equation:

d2u0
dθ2

+ u0 =
mk

l2
,

whose solution with the appropriate initial conditions and with the semi-major axis a pointing
in the x direction is

u0 =
mk

l2
(1 + e cos θ),

where e is the eccentricity given by the expression l2 = mka(1 − e2). The next order of
perturbation is obtained taking the terms in ε1 and using value of u0 obtained above, it reads

d2u1
dθ2

+ u1 = u20.

The solution of the Eq.(10) up to the first order is

u =
mk

l2
(1 + e cos(θ − δθ)),

where

δθ =
3dm2k

l4
θ.

After one revolution (θ = δθ + 2π ≈ 2π), so that the precession is

δθ =
6πdm2k

l4
.

Using the experimental data for Mercury we have: δθ ≈ 1.27× 10−12 arcsec/Cy.

6. Conclusions
In this work we have focused on the gravitomagnetic field produced by two rotating spheres,
in particular we considered that the field produced by the Sun and its influence on Mercury.
Our work is a first step to analyse the gravitomagnetic field influence in solar system’s planets.
We concluded that as was expected the value for the advance of perihelion obtained by GM is
very small comparing with the one obtained by GR that is δθ ≈ 43 arcsec/Cy. However we still
search if it’s possible that the GM have a significant effect in some system.
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