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Abstract. This work presents the first results of an extension of the spectral quark model
which includes different flavors. The spectral quark model is an approach based on a
generalization of the Lehmann representation for the quark propagator. Gauge and chiral
invariance are ensured with the help of gauge technique which provides particular solutions to
the Ward-Takahashi identities. General conditions on the quark spectral function follow from
natural physical requirements. In particular, the function is normalized, its positive momenta
must vanish, while the physical observables depend on negative moments and the so-called log
moments. As a consequence, the model is made finite. To allow the description of mesons
constituted by different flavors of quarks we introduce different spectral functions and obtain
vertex functions constructed from Ward-Takahashi identities that includes two different spectral
(constituent) quark masses, allowing the physical description of strange mesons, for example.
We obtain some observables based on the current approach and, in particular, the spectral
version of the Kaon analogous Goldberger-Treiman relation.

1. Introduction
The non-perturbative behavior of Quantum-Chromodynamics (QCD) at low energies is an
ubiquitous feature of this theory. The running coupling constant of the strong interaction
at this level assumes large values, not allowing the perturbative treatment that is successfully
employed in the high energy limit or in other theories (Quantum Electrodynamics, for example).
Thus, the study of the hadronic states that lie on this range of energy has to be carried out by
using non-perturbative approaches such as lattice QCD or effective models. Belonging to this
second class, chiral quark models, i.e., effective models that present the quarks as the relevant
degrees of freedom and incorporate the relevant symmetries of QCD, are very successful on the
description of the QCD low energy phenomenology. In this case, the non-perturbative behavior
of QCD manifests itself by the presence of a constituent mass for the quarks, the consequence of
a non-perturbative vacuum. The constituent mass is the effective mass that includes the effects
of quantum corrections due the interaction of quarks with gluons and the self interaction of the
gluons.

As a price to be paid, effective models are not fundamental, and need the introduction of
parameters external to the theory. Some of these models include other degrees of freedom, such
as mesonic [1, 2] or gluonic fields [3] that, even ensuring their renormalizability, introduce extra
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couplings and masses not present on the underlying theory. Other purely fermionic models,
as the well established Nambu-Jona-Lasinio model [4, 5] are non renormalizable, and results
are dependent of the regularization schemes and regularization parameters employed on their
treatment.

The Spectral Quark Model (SQM) is a recently formulated effective chiral quark model that
naturally incorporate some of the essential features discussed above. The non perturbative
behavior is introduced by using the Lehmann representation for the quark propagators. These
propagators include the constituent mass as a spectral running mass, reproducing the effect of
the dependence of the constituent mass with the energy scale of the processes involved. SQM
is also constructed in such a way to preserve important symmetries of QCD, by means of the
gauge technique [6, 7].

A surprisingly and relevant feature of SQM is its finiteness, constructed via the correct
selection of the so called spectral conditions and implying in the independence of the
regularization scheme and regularization parameters employed on the intermediary steps of
the calculations. Although the introduction of the Lehmann spectral distributions is per se
an introduction of extra parameters, the SQM provides, by imposing physical conditions (as
unitarity, finiteness and symmetries expressed by Ward identities [8, 9]) the necessary relations
to determine the relevant parameters of the spectral distribution - the spectral conditions. The
model was successfully applied to describe the low energy hadrons phenomenology [10, 11, 12]
and other effects such as the Polyakov loop [13], Chiral anomaly [14] and so on.

As originally formulated, the SQM includes only one quark flavor (expressed by an unique
spectral distribution), being adequate to describe the observables related to one flavored states,
as the mesons Pion, Eta, Rho and so on. As a consequence, SQM still could not be used to
describe the phenomenology involving two different quarks, like strange mesons for example.

In this contribution we take the first steps towards the construction of a three flavored version
of the Spectral Quark Model by postulating two different spectral distributions for the up/down
and for the strange quarks. We will show here that it is possible to construct vector and axial
vectors vertex functions with one current that satisfy the Ward Identities and involving only
the two spectral distributions mentioned above. Besides, by using the axial vertex function, we
obtain the spectral version of the analogous Goldberger-Treiman relation for the Kaon.

2. The Model
In order to develop the three flavored version of SQM, we closely follow the results presented in
[10], employing the Lehmann representation for the up/down and strange quarks propagators:

Ss(p) =

∫
C
dω
ρs(ω)

/p− ω
Su(p) =

∫
C
dω
ρu(ω)

/p− ω
, (1)

where ω is the spectral constituent mass, ρu(ω) e ρs(ω) are the spectral distributions for quarks
up/down and strange respectively and C denotes a contour in the complex ω plane. As in the
one flavored version, physical requirements imposed some relations (the spectral conditions) for
the moments of the spectral distributions, such as the normalization condition

ρq,0 ≡
∫
dωρq(ω) = 1. (2)

We also define the positive, negative and log spectral momenta respectively as

ρq,n ≡
∫
dωωnρq(ω) n = 1, 2, ..., (3)

ρq,−n ≡
∫
dωω−nρq(ω), (4)
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and

ρ′q,n ≡
∫
dω log(ω2)ωnρq(ω). (5)

In equations (3)-(5) the distribution ρq(ω) denotes generically any of the distributions ρu(ω)
and ρs(ω). Other relevant quantities to be considered on the current approach are the one
current vector and axial unamputated vertex functions, defined as

Λµ,aV (p, p′) = iSu(p′)Γµ,aV (p, p′)iSs(p) =

∫
d4xd4x′〈0|T{Jµ,aV (0)q(x′)q(x)}|0〉ei(p′x′−px), (6)

and

Λµ,aA (p, p′) = iSu(p′)Γµ,aA (p, p′)iSs(p) =

∫
d4xd4x′〈0|T{Jµ,aA (0)q(x′)q(x)}|0〉ei(p′x′−px), (7)

respectively. Here

Jµ,aV (x) = q(x)γµ
λa
2
q(x), (8)

and

Jµ,aA (x) = q(x)γµγ5
λa
2
q(x). (9)

are the vector and axial currents and the Γ′s represent the corresponding amputated vertex
functions. Also, λa are the Gell-Mann matrices and γµ are the Dirac matrices. The Ward-
Takahashi (WT) identity for the full vector vertex reads

(p′ − p)µΛµ,aV (p, p′) = Su(p′)
λa
2
− λa

2
Ss(p), (10)

and, for the axial vertex,

(p′ − p)µΛµ,aA (p, p′) = Su(p′)
λa
2
γ5 + γ5

λa
2
Ss(p). (11)

The SQM also makes use of the gauge technique [15, 16] in order to determine particular
representations of the vertex functions Eq.(6) and Eq.(7) that satisfy the WT identities, Eq.(10)
and (11). We will determine these quantities, in the context of the three flavor version of
SQM, on section 5. In the next sections, we will obtain some single expressions for the quark
condensates and the vacuum energy density.

3. 〈ūu〉 and 〈s̄s〉 quark condensates
The quark condensate is the vacuum expected value of a chiral fermion/antifermion pair, taken
as the order parameter for the chiral phase transition from the chiral symmetric phase(〈q̄q〉 = 0)
to the phase where this symmetry is broken (〈q̄q〉 6= 0). The quark condensate for a single flavor
is given by

〈q̄q〉 = −iNc

∫
dωρq(ω)

∫
d4p

(2π)4Tr
1

/p− ω
, (12)

where the trace is done on the Dirac matrices and Nc = 3 is the number of colors. As we need
to perform the integration on p before to proceed the spectral integration, we need to use an
auxiliary regularization method - which will be removed at the end of calculation, once that
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the integral over the momentum p is quadratically divergent. Here, we employ the sharp-cutoff
regularization, obtaining

〈q̄q〉 = − Nc

4π2

∫
dωρq(ω)ω

[
Λ2 + ω2 log

(
ω2

Λ2 + ω2

)]
. (13)

As before, the subscript q denotes both u or s flavors of the quarks. As we can see from Eq. 13,
finiteness of the result at Λ→∞ requires that

ρq,1 =

∫
dωωρq(ω) = 0, (14)

and

ρq,3 =

∫
dωω3ρq(ω) = 0. (15)

and thus

〈q̄q〉 = − Nc

4π2

∫
dω log(ω2)ω3ρq(ω) = − Nc

4π2
ρ′q,3, (16)

or

ρ′q,3 = −4π2

Nc
〈q̄q〉. (17)

allowing the determination of the spectral momenta ρ′q,3 from the experimental estimates of the
quark condensates. Except for the possibility of employing different spectral conditions, this
result is the same previously obtained on [10].

4. Vacuum energy density
The vacuum energy density (denoted as B) is the vacuum energy related to the spontaneous
creation of virtual particle/antiparticle pairs. Within SQM, it can be evaluated from the
vacuum expected value of the energy-momentum tensor for a purely quark model, given by,
after explicitly taken the trace on flavors

gµνB = 〈θµν(x)〉 − 〈θµν(x)〉0

= −iNc

∫
dω(2ρu(ω) + ρs(ω))

∫
d4p

(2π)4Tr

{
1

/p− ω
×
[

1

2
(γµpν + γνpµ)− gµν(/p− ω)

]}
= −4iNc

∫
dω(2ρu(ω) + ρs(ω))

∫
d4p

(2π)4

pµpν − gµν(p2 − ω2)

p2 − ω2
, (18)

where 〈θµν〉0 is the expected value of the energy-momentum tensor evaluated for the free theory
(with ρ(ω) = ρ(ω′) = δ(ω)).

Thus, we obtain, for the vacuum energy density,

B = −iNc

∫
dω(2ρu(ω) + ρs(ω))

∫
d4p

(2π)4

ω2

p2 − ω2
. (19)

Employing again a sharp cut-off intermediate regularization procedure, we obtain

B = − Nc

16π2

∫
dω(2ρu(ω) + ρs(ω))ω2

[
Λ2 + ω2 log

(
ω2

Λ2 + ω2

)]
. (20)

Hence, the conditions that must be fulfilled for finiteness of B are

ρq,2 =

∫
dωω2ρq(ω) = 0, (21)
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and

ρq,4 =

∫
dωω4ρq(ω) = 0. (22)

Finally,

B = − Nc

16π2

{
2

∫
dωρu(ω)ω4 log(ω2) +

∫
dωρs(ω)ω4 log(ω2)

}
= − Nc

16π2
(2ρ′u,4 + ρ′s,4). (23)

Written in terms of the expected value for the gluon condensate, 〈αs
π G

2〉, we have [7]

B = − Nc

16π2
(2ρ′u,4 + ρ′s,4) = − 9

32
〈α
π
G2〉, (24)

or

(2ρ′u,4 + ρ′s,4) = −3π2

2
〈α
π
G2〉. (25)

where αs is the perturbative strong interaction constant, G2 = GaµνG
aµν and Gµν is the gluon

field strength tensor.
By collecting the results for the momenta of the spectral distributions, such as Eq.(17)

and (25), one can find a set of equations relating the unknown spectral momenta to physical
observables that allow the determination of the relevant momenta of ρu and ρs and giving
predictive power to the SQM. In this contribution, however, we will concentrate on the obtaining
of vertex functions that satisfy the Ward identities in the context of quarks with different flavors.

5. Vertices with one current from the gauge technique
The gauge technique consists on finding solutions for the chiral and electromagnetic WT

identities, Eqs. (10) and (11), determining a particular representation for the vector and axial-
vector vertices. For two different flavors, we write a first attempt solution for the vector WT
identity as

Λµ,aV (p, p′) = iSu(p′)Γµ,aV (p, p′)iSs(p) =

∫
dω′dωρus(ω, ω

′)
i

/p′ − ω′
γµ
λa
2

i

/p− ω
. (26)

One should expect that the spectral distribution for two different flavors, ρus(ω, ω
′), could

be written as a separable function of the two spectral masses expressed in terms of the quark
distribution functions ρu and ρs. In fact, this is really the case we will treat here, and is a
remarkable feature that this possibility is assured by the normalization spectral condition, Eq.
(2), as we shall see. So, we will assume

ρus(ω, ω
′) = ρu(ω)ρs(ω

′). (27)

We should stress, however, that the separable solution is not the only possibility. For example,
the results for the one flavor SQM can be recovered from our approach if we write ρus (in fact,
ρuu, in this case) as

ρuu(ω, ω′) = ρu(ω)δ(ω − ω′), (28)

and this solution is non-separable.
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Inserting the attempt solution (26) on the vector WT identity, Eq.(10), and using Eq.(27),
we obtain

(p′ − p)µiSu(p′)Γµ,aV (p, p′)iSs(p) =− λa
2

∫
dω′ρu(ω′)

∫
dω
ρs(ω)

/p− ω

+
λa
2

∫
dωρs(ω)

∫
dω′

ρu(ω′)

/p′ − ω′

+

∫
dω′dωρu(ω′)ρs(ω)

i

/p′ − ω′
(ω′ − ω)

λa
2

i

/p− ω
, (29)

where we can explicitly see that the normalization spectral condition, Eq.(2), ensures that

(p′ − p)µiSu(p′)Γµ,aV (p, p′)iSs(p) = Su(p′)
λa
2
− λa

2
Ss(p)

+

∫
dω′dωρu(ω′)ρs(ω)

i

/p′ − ω′
(ω′ − ω)

λa
2

i

/p− ω
. (30)

The first attempt solution does not satisfy the WT identity, but can be used as a guide for a
second ansatz for the vector vertex function, written as

Λµ,aV (p, p′) =

∫
dω′dωρu(ω′)ρs(ω)

i

/p′ − ω′

(
γµ − (ω′ − ω)qµ

q2

)
λa
2

i

/p− ω
, (31)

where qµ = (p′ − p)µ. One can easily show that Eq.(31) is a solution of the vector WT identity,
Eq.(10). Also, if we replace the spectral two quarks distribution ρus by the one flavor non
separable solution, Eq.(28), we recover the result of the original SQM.

Following the same steps, we obtain, for the solution of the axial WT identity, Eq. (11), the
axial unamputated vertex,

Λµ,aA (p, p′) =

∫
dω′dωρu(ω′)ρs(ω)

i

/p′ − ω′

(
γµ − (ω′ + ω)qµ

q2

)
γ5λa

2

i

/p− ω
. (32)

The results showed here are similar to those obtained in ref. [10], but present two different
features that are significant to the development of a three flavor version of SQM: (a) the vector
current term inside the spectral integral of the vertex function presents a dependence on the
spectral masses ω and ω′, implying on the rising of extra terms on the expressions of observables
involving the vector function, in contrast with the one flavored version, where the vector current
contains only the γµ term; (b) Both vertex functions involve two spectral distributions integrated
over two different spectral masses. This fact allows the emergence of new spectral moments
involving non separable integrals in ω and ω′ (convolution integrals of the distribution functions
ρu and ρs). Nevertheless, none of the results presented in this contribution depends on these
new spectral moments.

6. Analogous Goldberger-Treiman Relation for the Kaon
In this section, we present a version of the Goldberger-Treiman Relation (GT) for the kaon, in the
context of the three flavor version of SQM. As it is well known, any chiral model which intends to
be a prototype of QCD in low energies should satisfy the GT Relation, once that such relation is
not dependent of any model, but, instead of, it is a consequence of the chiral symmetry breaking
and the partial conservation of axial current hypothesis (PCAC), two of the most important
elements of QCD. GT relation establishes a connection between quark and mesonic properties,
like masses, meson weak constant decays and quark-meson coupling constants in low energies.
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We can obtain the analogous GT Relation in the SQM from the axial unamputaded vertex
expression. In such vertex, we take the limit q2 → 0, where qµ is the meson momentum. In
this limit, we mean that there is a coupling between the Goldstone bosons (kaons or pions) and
the axial current, and such coupling is proportional to the meson momentum. As we can see,
the axial unamputaded vertex has a pole in (q2 → 0) and, the kaon decay, characterized by the
axial vertex (32), is dominated by the pseudoscalar coupling and the axial vertex is associated
with the wave function of the kaon (corresponding to the vertex k → qq̄) by the relation

Λµ,aA (p, p′)|q−→0 → −2fk
qµ

q2
Λak(p, p

′), (33)

where fk is the kaon constant decay. From (33), we get

Λak(p, p
′) =

∫
dω′dωρu(ω′)ρs̄(ω)

i

/p′ − ω′
(ω′ + ω)

2fk
γ5λa

2

i

/p− ω
, (34)

and we can identify the coupling between quarks and the kaon by

gk(ω
′, ω) =

ω′ + ω

2fk
. (35)

which is the analogous Goldberger-Treiman relation for the kaon [17], connecting the coupling
constant between the kaon meson and the up and strange quarks, the spectral quark masses and
the kaon constant decay. It is immediate to see that the analogous GT relation reproduces the
expected result in the one flavor SQM [10], where the two spectral masses are equal.

7. Conclusion
In this work we obtained the vector and axial vector vertex functions in the context of the
Spectral Quark Model by using an approach that includes different flavors of quarks. The
approach is based on employing two different spectral functions and, by using the gauge
technique, obtaining vertex functions that are related to these spectral propagators and satisfy
the corresponding vector and axial vector Ward-Takahashi identities. From the propagators
and vertex functions we obtained the expressions for the quark condensate, vacuum energy
density and the analogous Goldberger-Treiman relation for the kaon. We discussed the relevant
differences between the current approach and the one flavor version, and the spectral two quarks
distribution that leads the current version to the original one. We also obtained the spectral
version of the kaon analogous Goldbeger-Treiman relation. The approach opens the possibility
to obtain other observables of mesons with different content of quarks, such as the weak decay
and the electromagnetic form factor of the strange mesons (work in progress).
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