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Abstract. Neutron stars are born with high temperatures and during a few seconds suffer
rapid cooling by emission of neutrinos. The direct Urca process is the main mechanism to
explain this loss of energy. In this work we study the influence of a strong magnetic field on the
composition of nuclear matter at high densities and zero temperature. We describe the matter
through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons
magnetic field. As output of the numerical calculations, we obtain the relative population for a
parametrized magnetic field. We calculate the cooling of neutron stars with different mass and
magnetic fields due to direct Urca process

1. Introduction
Strong magnetic fields of magnitudes up to 10'* G are suppose to exists at the surface of
pulsars. So, it is of interest to study the properties of nuclear matter in the presence of such
strong magnetic fields. In this work we study the influence of a strong magnetic field on the
composition of nuclear matter at 7' = 0, and investigate the cooling of neutron stars due to the
direct Urca process using the resulting equation of state.

The matter at high densities is described using a relativistic mean field (MF) theory which
describes correctly the nuclear ground state properties and elastic scattering of nucleons. The
Lagrangian that describes this model, with a uniform magnetic field B along the z axis, is given

by [1]
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where DH = O +ig, A", A° =0, A= (0,2B,0), gp and ¢ are the electric charge of baryons and
leptons, 1 is the Dirac spinor for baryon b in the octet {n,p, A, ¥, =2} with mass my; my, my,
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m, and ggb, gubs gpp are the masses and coupling constants of mesons o, w, p respectively. The
summation in the first line represents the free Lagrangian of baryons together with the interaction
between baryons and mesons; The mesonic and electromagnetic field strength tensors are

Wy = Opwy — Opwy, (2)
Puv = a,upl/ - 8Vpu7 (3)
Fu = 0,A, —,A,. (4)

The baryon octet, showing their quantum numbers, charge g, and isospin projection I3, are
shown in Table 1.

Table 1. The baryon octet, showing their quantum numbers, charge ¢, isospin projection Igp.
Species Mass @ I3

(MeV)  (e)

p 939 1 1/2
n 939 0 -1/2
A 1115 0 0

»t 119 1 1

»0 1190 0 0

»- 1190 -1 -1
=0 1315 0 1/2
=" 1315 -1 —1/2

The Lagrangian of leptons (electrons and muons) is written in the third line while the scalar
self-interactions term is given by

Ulo) = ébmn(gana)B’ + %c(g(ma)‘*, (5)

where b and ¢ are constants.
The dynamic equations of nucleon and mesons (Dirac and Klein-Gordon equations
respectively) are obtained from the Euler-Lagrange equations

oL ., oL
0p(x) " 0(0u)

where ¢(z) is the corresponding field. The resulting equations of motion in the mean field
approximation are given by

2
GunWo = (an) Zwapba (7)
b

=0, (6)
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where I3, is the 3-component of the isospin of the baryon b, m) = m, — Xob9on0s Xob = Job/Gon,
Xewb = Juwb/Gns Xpb = Gpb/gpn; The scalar density is given by

nszngzo—&—ng?&O, (10)
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miy, = my’+2u|qB, (13)
Kow, = Hp>—m;” — 2uplqp| B, (14)

where g and p; are the electric charge and effective chemical potential of baryon b, k, and &y ,,
are the Fermi momentum of neutral and charge baryons respectively. v is the Landau principal
quantum number, which can take all possible positive integer values including zero. The upper
limit vpax(p) 15 defined by the condition kiub > 0, then

2 2
ity — it %] (15)
The effective chemical potential of baryons are given by
1y, = Hb— XwbJwn®o — XpbJpnI3pP03- (16)
They are constrained due to the S-equilibrium condition, which reads
Wy = fin — bl (17)
M= =y (18)

where u, and p. are the chemical potentials of neutron and electron respectively. The baryon
densities are

q=0 kg’
Py = 352 (19)
Vmax(b)
0 aw|B
AP0 = |2712 S Gokbo, (20)
v=0
while the lepton (electrons and muons) densities are
Vmax(1)
la|B
= 2 Z gl/kl,ylv (21)
2w =
with
ki, =ui —mi —2v|q|B (22)
and
2 2
_ Ky —my
Vmax(l) = int 2B ] (23)
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where mzzl, = mb + 2up|qp| B, v is the Landau principal quantum number and the Landau level

degeneracy gy is 1 for v =0 and 2 for v > 0.
Neutron star matter satisfies the constraints of conservation of baryon number and neutrality
of electric charge, which reads

p = Zpbv (24)
0 = Z%PH- > - (25)

l=e=,u~

The energy density due to the matter is given by [2]

1 1 1 (Mop > 1 (Mmgn >
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B Vmax(b) % + k
"J| Z Z 9 ,Ubk'b " _'_m;;QVb % In {'ub*bv”b
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5 S bt {25n)]
=e",u- V= =0 mlv’/l
(26)
where
mlz y = mi + 2u|q|B. (27)
The matter pressure is given by
Prn = pnpy —em. (28)

Next, we add to these the contribution from electromagnetic field tensor, obtaining the total
energy density and pressure as

BZ

E = &m + ?, (29)
BQ

P = Put. (30)

The magnetic field is parametrized by

B(p/po) = B**"/ + Bo[1 — exp{—B(p/p0)"}], (31)

where B5""f = 108G and By = 10'°G are the magnetic fields at the surface and the center of the
star respectively, with the parameters f = 10~* and v = 17, and py is the saturation density.

The system of coupled nonlinear equations (7-9) with constraints (24-25) is solved numerically
by iteration. We use the Newton-Raphson method with global search of the solution. We adopt
natural units. As output, we obtain the relative population of each specie of particles as a
function of the baryon density, and the energy density and pressure with and without magnetic
field. The coupling constants are given in Tables 2, 3 e 4.
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Table 2. Nucleon-meson coupling constants to compression K = 300 MeV and m*/m = 0.70

).
(Fomyp (e (R c
(fm?)  (fm?)  (fm?)

11.79  7.148  4.410  0.002947 -0.001070

Table 3. Parametrizations used for the hyperon coupling constants [3].
XoA Xox XoZ= XwA = XwEZ  XwE

0.6106 0.4046 0.3195 2/3 1/3

Table 4. Parametrizations used for the hyperon coupling constants [3].
XpA  XpX  Xp=

1 1 1
1 T T T I T T T T
n

01 F
)
£
&

= 0.01 |
el
k]
>
Q.
o
o

2 0001 |
©
[0}
[ans

0.0001 |

1e_05 1 1 1 1 1 1 Il 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05 055 06

Baryon Density (fm'a)

Figure 1. The particle fractions in cold S-equilibrated neutron star without magnetic field.

The Fig 1 and Fig 2 show the results without and with an parametrized magnetic field,
respectively. It can be seen that the incorporation of strong magnetic field increases the proton
and electron fraction. This effect is important for the neutrino emissivity due to the direct Urca
process, having an impact on the cooling of neutron stars.

The direct Urca process is the most powerful mechanism of neutrino emission in the core of
neutron stars. Neutron star cooling by Urca process may provide important informations about
the interior composition of the star. The reaction is given by

n — p+e +7,
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Figure 2. The particle fractions in cold B-equilibrated neutron star for the parametrized
magnetic field.

p+e  — n+re.
This process may occur if the proton fraction is large enough

an < ka+kFea (32)

where
kpq = (37T2pa)1/3, (33)

in order to conserve momentum in the reaction. As we have showed above, strong magnetic
fields lead to an increase of the proton fraction and the cooling of neutron stars is more efficient.

In the Weinberg-Salam theory for weak interactions, the interaction Lagrangian is given by
[4]

L

cos O.1,,5",

Gr
weak — ﬁ

where G is the Fermi weak coupling constant and 6. is the Cabibbo angle. The Lepton and
nucleon charged weak currents are

L = Paysp(l—v5)¢2, (34)
g o= vy (gv — gavs)Yr, (35)
gy and g4 are vector and axial-vector coupling constants and the indices i = 1 — 4 refer to the

n, V., p and e, respectively. The wave functions for neutron and antineutrino are plane wave
functions. The wave functions for both protons and electron in the presence of a magnetic field
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strong enough that only the ground Landau level is occupied are given by

1 e . -

Y3(X) = T exp(—zEgt+zk3yy+zk3zz)f};§y,£3, (36)
yz
1 . . . Vi

V(X)) = — exp(—zE4t+zk4yy+zk4zz)fk:y’£4z, (37)
yHz

where f,;’jy:,%z and f,;’:;ISM are the 4-component spinor solutions of the corresponding Dirac

equation. The only positive energy spinor for protons in the chiral representation is [5]

E3 + ks,

v3=0 0
kayiks: (2) = Nug=0 —m3 Ly =0iks (38)

0

where
1
Ny = s _EM< = kz +m*2 1/27 39
3=0 [2E§(E§+k3z)]1/2 3 ( 3z 3 ) ( )
eB\'/* 1 k3, \2] 1 ks,
Iygzo;kgy = (71') exXp [_QGB ($ — e_B) T?"Hyd |:V 2eB <x — 6_B):| ,

and are the Hermite polynomial and e is the electron charge.
The emissivity due to the antineutrino emission process in presence of a uniform magnetic
field B along z-axis is [?]

o, /Vd3k1 /Vd3k2 /qBLzﬂ Lydks, /dekgz /qBLz/Z Lydks,
Y (2m)® ) (2m)3 JoqBL.s2 27 2r  JgBL.j2 27

x [ EE Bl - Sl - ) (10)

where the pre-factor 2 takes into account the neutron spin degeneracy and f; is the Fermi-Dirac
distribution functions. By the Fermi’s golden rule, the transition rate per unity volume Wy; is

M2
Wpi = <|ﬂf/‘> (41)

where ¢ is the time, V = V,V,V, is the normalization volume and the matrix element for the
V-A interaction is given by

My = ?/g d* X by (X)v* (gv — 9a75)¥3(X) (X ) (1 — 75)0a(X), (42)

where (.) denotes an averaging over the initial spin of n and a sum over spins of final particles
(p,e). Then, the transition rate per unit volume is

2 _ 2 2
Wy - G L o (_(klx kaz) +(k3y+k4y)>

E{E, BB, V3L, L, 2B

x [(gv + ga)*(k1.k2) (ks.ka) + (gv — ga)?

x (k1.ks)(ks.k2) — (g3 — g2)m™?(ka.k2))(27)°6 (E} — E — Ej — Ey)
X 5(k'1y — k’gy — k‘gy — k‘4y)5(k'1z — k?gz — k’gz — ]{:42).
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Then, the emissivity is

4 k &
vz %G% cos” Be(eB)(gv + 94)° (1 B MF;) + (gv — ga)? (1 - ;Z’; oS 914)
*2 2 2 % %
2 24\ M (sz + kF4) - k;FI U4 6
~(ov - ex T%0,
v =) u?,u’{] P [ 2B Tk,

cosbOy = (kf, +kf, — k%3)/2kp1 kr,, T is the temperature, kp; is the Fermi momentum and the
threshold factor is © = 0(kp, + kr, — kr,), with 8(x) =1 (x > 0), 6(x) = 0 (otherwise).

2. Results

Figure 3 shows the cooling due to the direct Urca process of neutron stars with 1.4 and 1.6
solar masses (continuous and dashed lines, respectively) for the cases B = 0 (blue line) and
B(p/po) (red line). We can see that the cooling is more intense with the increase in the mass
of the star and for the case B(p/po). Theses differences may be attributed to the increase of
proton and electron fractions with the mass and magnetic field of the star and to the phase
space modifications.
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Figure 3. Cooling of a neutron star mass with 1.4 and 1.6 solar masses (continuous and dashed
lines, respectively) for the cases B = 0 (blue line) and B(p/po) = B**"f +By[1—exp{—B(p/po)"}]
(red line).
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