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Abstract. Neutron stars are born with high temperatures and during a few seconds suffer
rapid cooling by emission of neutrinos. The direct Urca process is the main mechanism to
explain this loss of energy. In this work we study the influence of a strong magnetic field on the
composition of nuclear matter at high densities and zero temperature. We describe the matter
through a relativistic mean-field model with eight light baryons (baryon octet), electrons, muons
magnetic field. As output of the numerical calculations, we obtain the relative population for a
parametrized magnetic field. We calculate the cooling of neutron stars with different mass and
magnetic fields due to direct Urca process

1. Introduction
Strong magnetic fields of magnitudes up to 1014 G are suppose to exists at the surface of
pulsars. So, it is of interest to study the properties of nuclear matter in the presence of such
strong magnetic fields. In this work we study the influence of a strong magnetic field on the
composition of nuclear matter at T = 0, and investigate the cooling of neutron stars due to the
direct Urca process using the resulting equation of state.

The matter at high densities is described using a relativistic mean field (MF) theory which
describes correctly the nuclear ground state properties and elastic scattering of nucleons. The
Lagrangian that describes this model, with a uniform magnetic field B along the z axis, is given
by [1]

L =
∑
b

ψ̄b[iγµD
µ −mb + gσbσ − gωbγµωµ −

1

2
gρbγµτ · ρµ]ψb +

1

2
∂µσ∂

µσ − 1

2
m2
σσ

2

−U(σ)− 1

4
ωµνω

µν +
1

2
m2
ωωµω

µ − 1

4
ρµν · ρµν +

1

2
m2
ρρµ · ρµ

+
∑

l=e−, µ−

ψ̄l[iγµ(∂µ + iqlA
µ)−ml]ψl −

1

4
FµνF

µν , (1)

where Dµ = ∂µ + iqbA
µ, A0 = 0, ~A = (0, xB, 0), qb and ql are the electric charge of baryons and

leptons, ψb is the Dirac spinor for baryon b in the octet {n, p,Λ,Σ,Ξ} with mass mb; mσ, mω,
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mρ and gσb, gωb, gρb are the masses and coupling constants of mesons σ, ω, ρ respectively. The
summation in the first line represents the free Lagrangian of baryons together with the interaction
between baryons and mesons; The mesonic and electromagnetic field strength tensors are

ωµν = ∂µων − ∂νωµ, (2)

ρµν = ∂µρν − ∂νρµ, (3)

Fµν = ∂µAν − ∂νAµ. (4)

The baryon octet, showing their quantum numbers, charge qb and isospin projection I3b are
shown in Table 1.

Table 1. The baryon octet, showing their quantum numbers, charge qb, isospin projection I3b.
Species Mass qb I3b

(MeV) (e)
p 939 1 1/2
n 939 0 −1/2
Λ 1115 0 0
Σ+ 1190 1 1
Σ0 1190 0 0
Σ− 1190 −1 −1
Ξ0 1315 0 1/2
Ξ− 1315 −1 −1/2

The Lagrangian of leptons (electrons and muons) is written in the third line while the scalar
self-interactions term is given by

U(σ) =
1

3
bmn(gσnσ)3 +

1

4
c(gσnσ)4, (5)

where b and c are constants.
The dynamic equations of nucleon and mesons (Dirac and Klein-Gordon equations

respectively) are obtained from the Euler-Lagrange equations

∂L
∂φ(x)

− ∂µ
∂L

∂(∂µφ)
= 0, (6)

where φ(x) is the corresponding field. The resulting equations of motion in the mean field
approximation are given by

gωnω0 =

(
gωn
mω

)2∑
b

χωbρb, (7)

gρnρ03 =

(
gρn
mρ

)2∑
b

χρbI3bρb, (8)

m∗n = mn +

(
gσn
mσn

)2

[bmn (mn −m∗n)2 + c(mn −m∗n)3 −
∑
b

χσbns

]
, (9)

where I3b is the 3-component of the isospin of the baryon b, m∗n = mn−χσbgσnσ, χσb = gσb/gσn,
χωb = gωb/gωn, χρb = gρb/gρn; The scalar density is given by

ns = nq= 0
s + nq 6= 0

s , (10)
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where

nq= 0
s =

m∗b
2π2

[
µ∗bkb −m∗2b ln

(
µ∗b + kb
m∗b

)]
, (11)

nq 6= 0
s =

m∗b |qb|B
2π2

νmax(b)∑
ν=0

gν ln

[
µ∗b + kb,νb
m∗b,νb

]
, (12)

with

m∗2b,νb = m∗2b + 2νb|qb|B, (13)

k2
b,νb

= µ∗2b −m∗2b − 2νb|qb|B, (14)

where qb and µ∗b are the electric charge and effective chemical potential of baryon b, kb and kb,νb
are the Fermi momentum of neutral and charge baryons respectively. νb is the Landau principal
quantum number, which can take all possible positive integer values including zero. The upper
limit νmax(b) is defined by the condition k2

b,νb
≥ 0, then

νmax(b) = int

[
µ∗2b −m∗2b

2|qb|B

]
. (15)

The effective chemical potential of baryons are given by

µ∗b = µb − χωbgωnω0 − χρbgρnI3bρ03. (16)

They are constrained due to the β-equilibrium condition, which reads

µb = µn − qbµe, (17)

µe− = µµ− , (18)

where µn and µe are the chemical potentials of neutron and electron respectively. The baryon
densities are

ρq=0
b =

k3
b

3π2
, (19)

ρq 6=0
b =

|qb|B
2π2

νmax(b)∑
ν=0

gνkb, νb (20)

while the lepton (electrons and muons) densities are

ρl =
|ql|B
2π2

νmax(l)∑
ν=0

gνkl,νl , (21)

with

k2
l,νl

= u2
l −m2

l − 2νl|ql|B (22)

and

νmax(l) = int

[
µ2
l −m2

l

2|ql|B

]
, (23)
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where m∗2b, νb = m∗2b + 2νb|qb|B, ν is the Landau principal quantum number and the Landau level
degeneracy gν is 1 for ν = 0 and 2 for ν > 0.

Neutron star matter satisfies the constraints of conservation of baryon number and neutrality
of electric charge, which reads

ρ =
∑
b

ρb, (24)

0 =
∑
b

qbρb +
∑

l=e−, µ−

qlρl. (25)

The energy density due to the matter is given by [2]

εm =
1

3
bmn(gσnσ)3 +

1

4
c (gσnσ)4 +

1

2

(
mσn

gσn

)2

(gσnσ)2 +
1

2

(
mωn

gωn

)2

(gωnω0)2

+
1

2

(
mρn

gρn

)2

(gρnρ03)2 +
∑
b(q=0)

1

8π2
[2µ∗b

3kb −m∗b
2µ∗bkb −m∗b

4 ln

{
µ∗b + kb
m∗b

}]

+
|q|B
4π2

∑
b(q 6=0)

νmax(b)∑
νb=0

gν [µ∗bkb, νb +m∗2b, νb × ln

{
µ∗b + kb, νb
m∗b, νb

}]

+
|q|B
4π2

∑
l=e−, µ−

νmax(l)∑
νl=0

gν

[
µl kl, νl +m2

l, νl
ln

{
µl + kl, νl
ml, νl

}]
,

(26)

where

m2
l, νl

= m2
l + 2νl|ql|B. (27)

The matter pressure is given by

Pm = µnρb − εm. (28)

Next, we add to these the contribution from electromagnetic field tensor, obtaining the total
energy density and pressure as

ε = εm +
B2

2
, (29)

P = Pm +
B2

2
. (30)

The magnetic field is parametrized by

B(ρ/ρ0) = Bsurf +B0[1− exp{−β(ρ/ρ0)γ}], (31)

where Bsurf = 108G and B0 = 1019G are the magnetic fields at the surface and the center of the
star respectively, with the parameters β = 10−4 and γ = 17, and ρ0 is the saturation density.

The system of coupled nonlinear equations (7-9) with constraints (24-25) is solved numerically
by iteration. We use the Newton-Raphson method with global search of the solution. We adopt
natural units. As output, we obtain the relative population of each specie of particles as a
function of the baryon density, and the energy density and pressure with and without magnetic
field. The coupling constants are given in Tables 2, 3 e 4.
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Table 2. Nucleon-meson coupling constants to compression K = 300 MeV and m∗/m = 0.70
[1].

(
gσn
mσ

)2 (
gωn
mω

)2 (
gρn
mρ

)2 b c

(fm2) (fm2) (fm2)
11.79 7.148 4.410 0.002947 -0.001070

Table 3. Parametrizations used for the hyperon coupling constants [3].
χσΛ χσΣ χσΞ χωΛ = χωΣ χωΞ

0.6106 0.4046 0.3195 2/3 1/3

Table 4. Parametrizations used for the hyperon coupling constants [3].
χρΛ χρΣ χρΞ

1 1 1
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Figure 1. The particle fractions in cold β-equilibrated neutron star without magnetic field.

The Fig 1 and Fig 2 show the results without and with an parametrized magnetic field,
respectively. It can be seen that the incorporation of strong magnetic field increases the proton
and electron fraction. This effect is important for the neutrino emissivity due to the direct Urca
process, having an impact on the cooling of neutron stars.

The direct Urca process is the most powerful mechanism of neutrino emission in the core of
neutron stars. Neutron star cooling by Urca process may provide important informations about
the interior composition of the star. The reaction is given by

n → p+ e− + ν̄e,
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Figure 2. The particle fractions in cold β-equilibrated neutron star for the parametrized
magnetic field.

p+ e− → n+ νe.

This process may occur if the proton fraction is large enough

kFn ≤ kFp + kFe, (32)

where
kFα = (3π2ρα)1/3, (33)

in order to conserve momentum in the reaction. As we have showed above, strong magnetic
fields lead to an increase of the proton fraction and the cooling of neutron stars is more efficient.

In the Weinberg-Salam theory for weak interactions, the interaction Lagrangian is given by
[4]

Lweak =
GF√

2
cos θclµj

µ,

where GF is the Fermi weak coupling constant and θc is the Cabibbo angle. The Lepton and
nucleon charged weak currents are

lµ = ψ̄4γ3µ(1− γ5)ψ2, (34)

jµ = ψ̄3γ
µ(gV − gAγ5)ψ1, (35)

gV and gA are vector and axial-vector coupling constants and the indices i = 1− 4 refer to the
n, ν̄e, p and e−, respectively. The wave functions for neutron and antineutrino are plane wave
functions. The wave functions for both protons and electron in the presence of a magnetic field
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strong enough that only the ground Landau level is occupied are given by

ψ3(X) =
1√
LyLz

exp(−iE∗3t+ ik3yy + ik3zz)f
ν3=0
k3y ,k3z

, (36)

ψ4(X) =
1√
LyLz

exp(−iE4t+ ik4yy + ik4zz)f
ν4=0
k4y ,k4z

, (37)

where fν3=0
k3y ,k3z

and fν4=0
k4y ,k4z

are the 4-component spinor solutions of the corresponding Dirac

equation. The only positive energy spinor for protons in the chiral representation is [5]

fν3=0
k3y ;k3z

(x) = Nν3=0


E∗3 + k3z

0
−m∗3

0

 Iν3=0;k3y , (38)

where

Nν3=0 =
1

[2E∗3(E∗3 + k3z)]1/2
, E∗3 = (k2

3z +m∗3
2)1/2, (39)

Iν3=0;k3y =

(
eB

π

)1/4

exp

[
−1

2
eB

(
x− k3y

eB

)2
]

1√
ν3!

Hν3

[√
2eB

(
x− k3y

eB

)]
,

and are the Hermite polynomial and e is the electron charge.
The emissivity due to the antineutrino emission process in presence of a uniform magnetic

field B along z-axis is [?]

εν = 2

∫
V d3k1

(2π)3

∫
V d3k2

(2π)3

∫ qBLx/2

−qBLx/2

Lydk3y

2π

∫
Lzdk3z

2π

∫ qBLx/2

−qBLx/2

Lydk4y

2π

×
∫
Lzdk4z

2π
E2Wfi f1[1− f3][1− f4], (40)

where the pre-factor 2 takes into account the neutron spin degeneracy and fi is the Fermi-Dirac
distribution functions. By the Fermi’s golden rule, the transition rate per unity volume Wfi is

Wfi =
〈|Mfi|2〉
tV

, (41)

where t is the time, V = VxVyVz is the normalization volume and the matrix element for the
V-A interaction is given by

Mfi =
GF√

2

∫
d4Xψ̄1(X)γµ(gV − gAγ5)ψ3(X)ψ̄2(X)γµ(1− γ5)ψ4(X), (42)

where 〈.〉 denotes an averaging over the initial spin of n and a sum over spins of final particles
(p, e). Then, the transition rate per unit volume is

Wfi =
G2
F

E∗1E2E∗3E4

1

V 3LyLz
exp

(
−(k1x − k2x)2 + (k3y + k4y)

2

2eB

)
× [(gV + gA)2(k1.k2)(k3.k4) + (gV − gA)2

× (k1.k4)(k3.k2)− (g2
V − g2

A)m∗2(k4.k2)](2π)3δ(E∗1 − E2 − E∗3 − E4)

× δ(k1y − k2y − k3y − k4y)δ(k1z − k2z − k3z − k4z).
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Then, the emissivity is

εν =
457π

5040
G2
F cos2 θc(eB)[(gV + gA)2

(
1− kF3

µ∗3

)
+ (gV − gA)2

(
1− kF1

µ∗n
cos θ14

)
−(g2

V − g2
A)

m∗2

µ∗3µ
∗
1

]
exp

[
(kF3 + kF4)2 − k2

F1

2eB

]
µ∗1µ

∗
3µ4

kF3kF4

T 6Θ,

cos θ14 = (k2
F1

+ k2
F4
− k2

F3
)/2kF1kF4 , T is the temperature, kFi is the Fermi momentum and the

threshold factor is Θ = θ(kF3 + kF4 − kF1), with θ(x) = 1 (x > 0), θ(x) = 0 (otherwise).

2. Results
Figure 3 shows the cooling due to the direct Urca process of neutron stars with 1.4 and 1.6
solar masses (continuous and dashed lines, respectively) for the cases B = 0 (blue line) and
B(ρ/ρ0) (red line). We can see that the cooling is more intense with the increase in the mass
of the star and for the case B(ρ/ρ0). Theses differences may be attributed to the increase of
proton and electron fractions with the mass and magnetic field of the star and to the phase
space modifications.
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Figure 3. Cooling of a neutron star mass with 1.4 and 1.6 solar masses (continuous and dashed
lines, respectively) for the cases B = 0 (blue line) and B(ρ/ρ0) = Bsurf+B0[1−exp{−β(ρ/ρ0)γ}]
(red line).
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