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Abstract. Deep Brain Stimulation (DBS) applies electric pulses into the subthalamic nucleus 

(STN) improving tremor and other symptoms associated to Parkinson’s disease. Accurate STN 

detection for proper location and implant of the stimulating electrodes is a complex task and 

surgeons are not always certain about final location. Signals from the STN acquired during DBS 

surgery are obtained with microelectrodes, having specific characteristics differing from other 

brain areas. Using supervised learning, a trained model based on previous microelectrode 

recordings (MER) can be obtained, being able to successfully classify the STN area for new 

MER signals. The K Nearest Neighbours (K-NN) algorithm has been successfully applied to 

STN detection. However, the use of the fuzzy form of the K-NN algorithm (KNN-F) has not 

been reported. This work compares the STN detection algorithm of K-NN and KNN-F. Real 

MER recordings from eight patients where previously classified by neurophysiologists, defining 

15 features. Sensitivity and specificity for the classifiers are obtained, Wilcoxon signed rank 

non-parametric test is used as statistical hypothesis validation. We conclude that the performance 

of KNN-F classifier is higher than K-NN with p<0.01 in STN specificity. 

 

1. Introduction  

Deep Brain Stimulation (DBS) is an effective neurosurgery to overcome motor system alterations such 

as tremors, rigidity and dyskinesia appearing in advanced stages of the Parkinson’s disease [1][2]. 

Stimulating DBS electrodes can be implanted in some brain basal nucleus, being the sub-thalamic 

nucleus (STN) which has proven a better clinical response in implanted patients [1]. An X-ray picture 

of a patient with implanted DBS electrodes is shown in figure 1. The STN is a  small lens-shaped nucleus 

with an approximated size of 5.9[mm]×3.7[mm]×5[mm] located in the transition between the 

diencephalon and mesencephalon surrounded by other structures functionally called substantia nigra, 

red nucleus and zona incerta area [3]. 
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An implanted DBS system acts as a brain pacemaker, generating electrical impulses specifically 

tuned for each patient for a better motor system response. Typically, the stimulation parameters are [1]: 

2[V] biphasic rectangular pulse with a pulse width of 60 [µs] at a frequency of 130 [Hz]. 

The detection of the target area to fix the stimulation electrodes in the STN is a complex task 

performed by the neurosurgery team. Depending on the available technology at an institution, the 

surgeons can be assisted by different tools: previous magnetic resonance to surgery, generic atlas 

overlapped to obtained images, tomography images during surgery, 3D reconstruction for the fusion of 

resonance and tomography images (coregister), visual and acoustic analysis of MER acquired signals 

[2][4][5]. Microelectrodes are 100µm in diameter entering the brain by means of a mechanical system, 

crossing different brain functional structures as seen on figure 1 (left): anterior thalamus (TH), zona 

incerta area (ZI), STN and substantia nigra (SN). Each of the functional areas are characterized by 

different signal patterns [2]. Signals acquired from MER are non-stationary and they are formed by 

trigger sequences coming from: i) neural activity in form of spikes, ii) background neural activity and 

iii) artifacts [2].  

 

 

Figure 1. Left: Basal nuclei in the brain: Thalamus-TH, Subthalamus-STN and 

Substantia nigra-SN. Right: X-ray picture of a patient with a bilateral DBS implant.  

 

Data mining tools are a useful to generate a model. Based on supervised learning and using 

previously acquired recordings, the model can successfully classify the STN area in new MER 

recordings. Guillen P. et al [6] were able to discriminate four sub-cortical zones (classes) in MER using 

statistical indexes further classified by 4.5 decision trees. However, it was robust but did not achieved a 

good precision in classification. Rodriguez – Sanchez A. et al [7] used non-linear indexes (correlation 

dimension, Hurst exponent and Lyapunov exponent) obtained from MER. The authors concluded that 

similar classification ratios could be achieved from statistical indexes than those obtained by non-linear 

indexes. Ciecierski K. et al [3] used decision trees to evaluate the Euclidean distance and the minimum 

variance algorithm to classify the mean square value into three groups: background noise amplitude, 

lowest and highest frequency in the background noise (calculated by means of the discrete Wavelet 

transform), and correlation between the pair of electrodes existing in the recording. The authors conclude 

that using these indicators is more stable and less statistically dependent than using spike detection. In 

addition, they show low classification ratios for some brain areas. Art Chaovalitwongse W. et al [2] 

propose three classifiers: Naive Bayes, K-nearest neighbours (K-NN) and decision tree using 13 

statistical features and one frequency indicator obtained from the MER signals. They show that results 

obtained using the frequency indicator are poor and statistical features show better performance. From 

the three proposed classifiers, those obtaining better ratios were the decision tree and K-NN, achieving 

a sensitivity and specificity around 80% for the STN brain area. Up to our knowledge, there are no 

results for STN classification using Fuzzy K-NN (KNN-F) which improves the results of K-NN. This 

work describes STN detection using MER signals and comparing results between K-NN and KNN-F 
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classifiers. Section 2 describes the methodology of the analysis and used data, followed by section 3 

where the classification results are described. Finally, section 4 provides the discussion of the obtained 

results and the conclusions. 

  

2. Methodology 

2.1. Data recordings  

La Fe Hospital in Valencia (Spain) leads a DBS implant program for Parkinson patients not responding 

to drugs. This study analyses MER neural activity recordings acquired from 8 patients during bilateral 

DBS surgery to implant the DBS stimulator in the STN area. Previously to surgery, the surgeons’ team 

define the MER insertion trajectory supported by magnetic resonance images. This image also allows 

to define the target area where the stimulation electrode must be implanted. The surgery technique used 

at La Fe Hospital acquires tomography images at the time of surgery, which are merged with the initial 

resonance image (coregister) so that the position of the stimulation electrode can be accurately 

determined and finally positioned in the STN. Moreover, neurophysiologists analyse the electrical signal 

from MER during all the trajectory to evaluate the area where the electrodes are located in the brain: 

TH, STN or SN. This signal analysis allows to settle the start and the end of the STN area and they can 

even define the best position inside the STN according to the electrical signal patterns. In this work, the 

nerula activity recording was made in both brain hemispheres with 2 parallel MER electrodes per 

hemisphere (2 [mm] separation) using a Medtronic recorder model 3389 with platinum-iridium 

electrodes and an impedance between 2 and 6 [MOhm] at 1000 [Hz]. Recordings were obtained at 12 

[kHz] sampling frequency using a 16-bit A/D converter at a total gain of 10000x with a 50 [Hz] mains 

filter. All recording were acquired with the MicroGuide ProTM system from Alpha Omega which also 

determines the MER distance from the target area. 

Data recording was done from 7 [mm] before to 4 [mm] after the target area. The MER advance was 

fixed in 0.2 [mm] steps with 1 second acquisition time in each step. Thus, 220 1-second registers was 

obtained from each patient. All recordings were later marked as in TH, STN or SN areas by the 

neurophysiologists and also validated by the acquired coregister images. 

2.2. MER features obtained from recordings. 

Signal processing was done in 1-second windows to calculate 15 features using Matlab®. Those registers 

showing artifacts and/or very low signal amplitude were discarded. For the remaining valid registers, 

the obtained parameters were, according to [2][4]:  

1. Spike-independent features: 

 basal: Basal amplitude value assessing the envolvent using the Hilbert transform. 

 kurt: Signal kurtosis.  

 CL: Sum of absolute value for the signal derivative.  

 TH: Threshold in the signal amplitude. 

 PK: Peaks number.  

 RA: RMS value of amplitude.  

 NE Non-linear mean energy.  

 ZC: Zero crossings.  

 

2. Spike-dependent features: 

 SBI: Ratio between the number of interspike time intervals lower than 10 [ms] and intervals 

higher than 10 [ms].  

 SP (pause ratio): Ratio between the number of interspike time intervals higher than 50 [ms] and 

intervals lower than 50 [ms].  

 SPR (pause index ratio): Ratio between the accumulated interspike time in a time higher and 

lower than 50 [ms].  
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 SC: Spikes per second.  

 SMAD: Mean spike differential amplitude as the mean value for the amplitude in two 

consecutive spikes.  

 SSD: Standard deviation of interspike intervals.  

 SF: Mean spike trigger frequency.  

 

Thus, a signal database with all 15 parameters for each insertion step, MER electrode and patient 

was created, including the zone annotation class (TH, STN or SN) given by neurophysiologists. In case 

of zero or undetermined value of all parameters in a certain insertion step value, this step was removed 

from the database. As classifiers must have balanced register values in each class, 50 registers for each 

zone and patient were taken. Finally, the dataset was scaled between [0,1]. 

2.3. K nearest neighbours classifier (K-NN) 

Let R(z)  N a hypersphere with V volume centred in z. Nk is the number of samples for a training 

dataset Tk for the K-NN classifier and wk the assigned class. The probability of having exactly n samples 

inside R(z) has a binomial distribution [8] according to equation (1).  
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If a certain radius is chosen around z, able to generate a volume exactly containing K samples, then, 

the radius and its volume depends on the z position inside the measurement space [8]. Thus, we can 

describe V(z) instead of V, being the estimation of the density [9] that in equation (2). 
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In K-NN, the value of K is fixed to estimate the model and the minimum volume V(z) containing 

those K samples [9]. Expression in equation (2) shows that, in regions where the density estimation is 

high, a low volume is expected. This is similar to a reduced interpolation zone. On the other hand, when 

the density estimation is low, the sphere has to grow in size to include all samples [9]. 

Parameter K controls the balance between the observational error and the variance according to 

equation (3) [8]. 

error nalobservatio low aobtain   toN   and    0N/

 variancelow aobtain    toN   and    

kk

k





k

k
                              (3)  

The K-NN technique has a practical interest as it works with the data sample required to estimate the 

model without calculating the probability density. Being Kk the number of neighbour samples from class 

wk, then, a conditional density estimator can be described in equation (4). 
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Combining (4) with the Naive Bayes classifier with uniform cost function [8], the estimated 

classification is obtained in equation (5). 
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                  (5) 

Expression in equation (5) concludes that the assigned class to vector z is that with the highest 

number of neighbour samples from class wk. closest to z. The K-NN method can be implemented with 

a relatively low computational cost even in case of high data samples [9]. The method greatly depends 
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on the number of data samples but using the distance (typically Euclidean distance) as the parameter 

defining the class, a sub-optimal results might be obtained [8]. It is also a classifier which is very 

sensitive to noise in training data [9]. This work used PRTool under Matlab®; cross correlation (n=10) 

of training data gave a K value ranging from 1 to 15. Finally, K=3 was adopted as it provided the best 

performance in the classification for the database. This K value was already used in [2] for similar data 

as those used in this work. 

2.4. Fuzzy K-NN classifier (KNN-F).  

This variant of K-NN includes fuzzy logic and this fact allows a sample to obtain a certain degree of 

pertinence to different classes. Different application of fuzzy K-NN has been reported [10-12]. This 

method assigns distance functions from the k nearest neighbours to the sample. This method uses the 

same principle used in K-NN in which the chosen class for a sample is assigned by observing the 

neighbours with a higher degree of pertinence. Then, the final decision is more precise than K-NN where 

only distances were compared, especially in overlapped classes [12]. 

Being W={x1,…,xn} N the set of n labelled data samples pertaining to c classes W={Z1,…,Zc} 

where µi(x) (equation 6) is the membership function to be calculated for the input vector, and µij is the 

membership function of the i-th class to vector j of labelled samples [11]. 
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The degree of pertinence of a sample to one of the classes is influenced by the inverse of the distances 

to the neighbours. This inverse of the distances can be used as a weight. In equation (6), m is the 

exponential weight representing the importance given to the centre due to the fact of being closer to the 

sample. Using cross correlation (n=10) of training data, the optimal m value ranging between 1 and 10 

was obtained. Finally, m =2 was fixed as the best classification results were obtained. The nearest 

neighbour xk related to the centre Zi, is more influent when the membership degree is reflected. 

Assessing the membership degree is a certainty factor to assign a simple to a class. In this work, the 

KNN-F classifiers were obtained using Matlab®. 

2.5. Performance of classifiers 

Eight subsets (training and validation) were generated from the total features obtained from the MER 

recordings (section 2.2). As an example, subset 1 was created with all data from patient 1 (150 registers) 

for validation and all the other patients from 2 to 8 were used for training (1050 registers). This 

methodology was repeated for every patient as proposed in [2]. Using the 8 training subsets, 8 K-NN 

and 8 KNN-F classifiers were obtained, further obtaining the classifier performance for the validation 

data using a 3x3 confusion matrix. From all the 8 confusion matrices obtained for each classifier, 2 

performance indexes were calculated: sensitivity and specificity. Sensitivity represents the ratio of 

registers detected in the right zone according to the annotated class. These values are shown in the 

diagonal values of the confusion matrix. Specificity shows those registers not belonging to a zone and 

they were not classified in that zone. The statistical analysis of the performance values was done using 

the Wilcoxon signed Rank non-parametric test for paired samples [8]. The tools used to obtain these 

values were PRTool and Matlab® statistical toolbox. 

 

3. Results 

Table 1 shows the results of sensitivity and specificity for the TH zone obtained with the two proposed 

classifiers (K-NN and KNN-F) using 15 features. The Wilcoxon signed rank test show p<0.01 for 

sensitivity and p<0.05 for specificity in the TH zone. In Figure 2 the box plot for both classifiers can be 

seen in the HT zone. 
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Table 1. Sensitivity and specificity for the TH zone using the K-NN and KNN-F classifiers trained 

with 15 features. 

  
Sensitivity      

K-NN 

Sensitivity      

KNN-F 

Specificity    

K-NN 

Specificity    

KNN-F 

Validation 1 0.73 0.85 0.79 0.91 

Validation 2 0.76 0.82 0.80 0.89 

Validation 3 0.73 0.88 0.69 0.91 

Validation 4 0.73 0.86 0.83 0.93 

Validation 5 0.66 0.86 0.71 0.90 

Validation 6 0.71 0.91 0.77 0.94 

Validation 7 0.72 0.86 0.84 0.84 

Validation 8 0.79 0.84 0.71 0.84 

Average 0.73±0.038 0.86±0.027 0.77±0.058 0.90±0.037 

 

Table 2 shows the results of sensitivity and specificity for the STN zone obtained with the classifiers 

K-NN and KNN-F using 15 features. The Wilcoxon signed rank test shows a non-significant difference 

for sensitivity and p<0.01 for specificity in the STN zone. In Figure 3 the box plot for both classifiers 

can be seen in the STN zone. 

Table 3 shows the results of sensitivity and specificity for the SN zone obtained with the proposed 

classifiers using 15 characteristics. The Wilcoxon signed rank test shows p<0.05 for sensitivity and non-

significant difference in specificity in SN zone. In figure 4 the box plot for both classifiers can be seen 

in the SN zone. 

 

 

 

Figure 2. Sensitivity boxes diagrams (top) and specificity (below) for TH zone using the K-NN and KNN-F 

classifiers trained with 15 features. 
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Table 2. Sensitivity and specificity for the STN zone using the K-NN and KNN-F classifiers trained 

with 15 features. 

 
Sensitivity      

K-NN 

Sensitivity      

KNN-F 

Specificity    

K-NN 

Specificity    

KNN-F 

Validation 1 0.62 0.72 0.75 0.82 

Validation 2 0.80 0.84 0.37 0.82 

Validation 3 0.68 0.77 0.62 0.73 

Validation 4 0.59 0.69 0.73 0.91 

Validation 5 0.70 0.70 0.68 0.86 

Validation 6 0.69 0.71 0.74 0.78 

Validation 7 0.75 0.64 0.70 0.75 

Validation 8 0.84 0.67 0.65 0.89 

Average 0.71±0.085 0.72±0.062 0.66±0.124 0.82±0.065 

 

  

 

Figure 3. Sensitivity boxes diagrams (top) and specificity (below) for STN zone using the K-NN and 

KNN-F classifiers trained with 15 features. 
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Table 3. Sensitivity and specificity for the SN zone using the K-NN and KNN-F classifiers trained 

with 15 features. 

  
Sensitivity      

K-NN 

Sensitivity      

KNN-F 

Specificity    

K-NN 

Specificity    

KNN-F 

Validation 1 0.68 0.81 0.56 0.73 

Validation 2 0.58 0.68 0.71 0.75 

Validation 3 0.83 0.83 0.64 0.80 

Validation 4 0.65 0.80 0.85 0.73 

Validation 5 0.70 0.84 0.67 0.78 

Validation 6 0.64 0.84 0.65 0.82 

Validation 7 0.62 0.77 0.73 0.66 

Validation 8 0.41 0.69 0.69 0.76 

Average 0.64±0.118 0.78±0.065 0.68±0.084 0.75±0.05 

 

 

 

 

Figure 4. Sensitivity boxes diagrams (top) and specificity (below) for SN zone using the K-NN and 

KNN-F classifiers trained with 15 features. 
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4. Discussion and conclusions 

The analysis of the results shows that the classifier KNN-F has better performance in all zones of 

classification. Specifically it has a very significant difference in sensitivity in the TH zone and 

significant difference in sensitivity of SN zone. For the zone of interest, that is the STN zone, the average 

sensitivity results were 0.72 ± 0.062 and average specificity results were 0.82 ± 0.065. Although we can 

not ensure a significant difference for sensitivity between the two methods, the statistical study shows a 

very significant difference in specificity. Probably it can be obtained higher sensitivities and specificities 

in the zone of interest and significant difference in sensitivity in the KNN zone if the number of patients 

for training classifiers it is increased. It is concluded that the performance of KNN-F classifier is 

acceptable and superior than KNN for the experimental conditions of this study and a group of 8 patients. 

Also it is possible, as a continuation of this work, combine KNN-F obtained by each training set using 

rules of maximum, minimum and average [10] which would provide a single more robust classifier with 

higher sensitivity and specificity, as it is proposed by [9] to other classifiers. 
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