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Abstract. The segmentation of anatomical and pathological structures plays a key role in the 

characterization of clinically relevant evidence from digital images. Recently, plenoptic imaging 

has emerged as a new promise to enrich the diagnostic potential of conventional photography. 

Since the plenoptic images comprises a set of slightly different versions of the target scene, we 

propose to make use of those images to improve the segmentation quality in relation to the 

scenario of a single image segmentation. The problem of finding a segmentation solution from 

multiple images of a single scene, is called segmentation fusion. This paper reviews the issue of 

segmentation fusion in order to find solutions that can be applied to plenoptic images, 

particularly images from the ophthalmological domain. 

Introduction 

The recent emergence of light field cameras in the consumer market [1, 2] has attracted the interest for 

developing applications which take advantage of the plenoptic images. Some of these applications 

include: face recognition [3], robotic navigation [4], 3-D microscopy [5], and computer graphics [6]. 

 

Conventional photographic cameras capture the intensity of light as it strikes their image sensing 

elements, while colour filters provide a second set of data, sorting the rays into different wavelengths. 

In addition, plenoptic cameras capture a third piece of information: angle. This allows cameras to go 

beyond, from focusing on a single plane to taking images at many different depths of a scene at once 

[7].  

 

Combining multiple angle versions of a single scene to obtain information about the world is not a new 

idea. In fact nature has been doing this for thousands of years. The visual system of the mantis shrimp 

allows to these marine crustaceans to see 12 different colour channels, from ultraviolet to infrared, to 

distinguish linear and circular polarization, and to perceive depth using trinocular vision with each eye 

[8]. Another example is given by compound eyes of flying insects, which are composed by numerous 

simple-single aperture eyes. Although they have a lower spatial resolution compared to mammalian 

single-lens eyes, given the high flicker frequency fusion rate of compound eyes, their temporal resolving 

power is considerably higher than for a single aperture eye. Thus compound eyes are ideal for motion 

detection [9]. 
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These combination of optics and computing processing to produce images that cannot be obtained with 

traditional cameras led to the appearance of new field: computational photography [10].  

 

This paper outlines the state of the art of segmentation fusion techniques as a basis for a project aimed 

at integrating plenoptic images into ophthalmological diagnostic instruments, specifically using slit 

lamps. Its main purpose is to review the techniques already suggested in the literature to cope with the 

problem of using n images of a single scene to improve image segmentation in the context of 

ophthalmology. The rest of the paper is organized in the following order: the next section reviews the 

most referred algorithms and methods applied to solve the segmentation problem with a single image in 

ophthalmology. The third section describes the particularities of plenoptic imaging. The fourth section 

shows the strategies found to deal with the problem of segmentation fusion. Finally, the work presents 

the conclusions and future work. 

 

Image Segmentation in Ophthalmology 

Ophthalmological imaging is a subfield of medical imaging which makes use of specific methods and 

equipment to detail the state of different components of the human eye like the cornea, crystalline, iris, 

retina and optical nerve. Figure 1 illustrates key functional and anatomical areas in human eye along 

with the most common diagnostic studies associated with their characterizations.  

 

 

Figure 1. Human eye anatomy and main imaging methods 

 

 

As can be seen in Figure 1, the human eyes have several structures and formations whose clinical 

characterization is fundamental to diagnose or to treat patients. The problem of segmenting those 

structures have its own body of research, and comprises the sub-tasks of pre-processing, feature 

extraction, and finally their localization and identification. 

Hundreds of references related with the detection and segmentation of anatomic structures such as the 

optic disc, the fovea, and retinal blood vessels from digital colour fundus images can be found in the 

literature. But there are also other well studied cases related with the detection of abnormal elements 

such as exudates, microaneurysms, or haemorrhage. 

In the following of this section, we present some work for each one of these tasks. 
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1.1. Optic Disc Segmentation 

The optic disc or optic nerve head is the exit point for ganglion cell axons leaving the eye, which then 

form the optic nerve. Figure 2 shows this landmark along with the macula, fovea and retinal blood tree. 

Authors of [11] propose a set of algorithms to recognise automatically main components of the fundus. 

The optic discs were located by identifying the area with the highest intensity variation of adjacent pixels, 

blood vessels were detected using a multilayer artificial neural network for which the inputs were 

derived from principal component analysis; and the fovea were identified using matching correlation 

and typical characteristics of this landmark such as the darkest area in the neighbourhood of the optic 

disc. They show that high sensibility and specificity can be achieved over a set of 112 cases. 

In [12] authors use the active contour/snake model for the detection of optic disc. The high contrast of 

the optic disc is the key element in this approach, however this method may be sensitive to the 

initialization values for size and shapes. Later, these authors propose the detection of the optic disc using 

region growing and edge detection [13]. The results presented reveal high sensitivity and specificity for 

the delineation of fovea and the optic disc edges, but the method requires a precise selection of seed 

points for region growing. 

In [14] a technique of unsupervised colour thresholding for detecting optic disc is used. Moreover, in 

this work authors try to find small yellowish structures, associated with the presence of exudates. 

Several clustering strategies have also been proposed for the problem of optic disk detection. In [15] 

clustering techniques are applied for the initial localization, while the final definition of the optic disc is 

performed through circular Hugh transform and fuzzy approaches. The results in these tests are validated 

by ophthalmologists. 

In [16] the optic disc detection is performed using k-nearest neighbour classifiers. This algorithm is a 

pixel level classification method, where intensity, edges and the outputs from Gaussian filters and Gabor 

wavelets are used as the set of attributes. 

In [17] authors employs deformation techniques for the segmentation of the optic disc, which is 

subsequently used to distinguish between images from normal and glaucoma patients. 

In [18] a technique for the segmentation of the optic disc based on histograms is presented. This 

technique includes the concept of fractal analysis, and authors found that their method is robust and 

computationally inexpensive. 

In [19] a method for the automatic evaluation of the segmented optic disc is described. 

The work of [20] integrates the local geometry of blood vessels with the image intensity for locating 

optic discs. A k-NN classifier is then applied to the optic disc segment. The results are relatively good 

for images with enough contrast but it is not so in case of low contrast 

1.2. Fovea and Macula Segmentation 

The macula is a pigmented oval area located in the central region of the retina, while the fovea is a small 

hole placed in the center of the macula, which contains the largest concentration of cone cells in the eye 

and is responsible for central, high-resolution vision. In [21] a method for macular segmentation using 

adaptive thresholds from optical coherence tomography is proposed. In this method various retinal 

layers are combined to detect the edges of the macula in images of normal and pathological retinas. The 

downside of this method is that it is not appropriate for low-quality images. 

The work of [22] applies statistical methods for macular segmentation with the purpose of detecting 

macular structures with irregular sizes and shapes. These macular degenerations are typically associated 

with age. 

 

1.3. Retinal Blood Vessels Segmentation 

The work in [23] examines the relative importance of the red channel into the segmentation of blood 

vessels from retinal images. The segmentation of these vessels is obtained using red and green channels, 

and the results are compared against the output obtained using just the green channel. These results 

suggest that a differential treatment for colour channels is an approach worth considering for high 

precision segmentation. 
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The paper [24] proposes a vessel segmentation system based on the extraction of image ridges. These 

ridges, which coincide approximately with vessel center lines are used to compose primitives in the form 

of line elements. These elements are used to split the image into patches by assigning each pixel to the 

closest line element, and finally the feature vectors are computed making use of properties of the patches 

and the line elements. The feature vectors are classified using a k-NN classifier and sequential forward 

feature selection. Employing a set of 40 manually segmented images, authors find the performance of 

this system competitive with a couple of previously reported methods. 

 

1.4. Microaneurysms, Exudates and Hemorrhage Segmentation 

In [25] there is a proposal to detect retinal lesions from diabetic retinopathy patients. The pre-processing 

step eliminates background pixels and extracts the blood vessels and the optic disc from the original 

image. Then a filterbank extracts the set of candidate lesions. A feature set based on different descriptors, 

such as shape, intensity, and statistics, is formulated for each possible candidate region: this further helps 

in classifying that region. Finally an m-Mediods based modelling approach combined with a Gaussian 

Mixture Model is employed for the classification. It achieved a value of 0.981 as its area under the ROC 

curve, as against 0.977 for m-Mediods and 0.963 for GMM. 

In [26] authors propose an exudate detection method which firstly perform normalization, denoising, 

and reflections/artifacts detection in the image; then selects between candidate segmentations based on 

mathematical morphology, and finally applies random forest to detect the exudates among the 

candidates. The method has been validated on three database, obtaining an AUC of 0.95. 

In [27] the authors develop various fully automated systems for retinal haemorrhage measurement, but 

they ultimately found user interaction to be necessary to achieve satisfactory validity of segmentation. 

 

Figure 2. Macula, Optic Disc and Blood Tree in a Fundus 

Photography. Image by Photograph: Danny Hope from Brighton & 

Hove. 
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In [28] authors compare the results of five different methods for microaneurysms detection, produced 

by five different teams of researchers on the same set of data. This set of data consisted of 50 training 

and 50 testing images, and beside the good results obtained for some types of aneurysms, the overall 

results shown that this is a challenging task for both the automatic methods as well as the human expert. 

The best performing system does not reach the performance of the human expert, indicating that there 

is room for improvement to solve this problem. 

 

Plenoptic Imaging 

Plenoptic imaging comprises a subset of computational photography approaches; specifically, those that 

aim at acquiring the dimensions of the plenoptic function with combined optical light modulation and 

computational reconstruction. Computational photography has grown tremendously in the last years in 

this interdisciplinary field, spanning optics, sensor technology and image processing. Figure 3 shows a 

scheme of a plenoptic imaging system. 

 

 

Figure 3. Conceptual View of Image formation in Light Field Cameras. Each microlens generates an 

image of the object ('+' pattern), with characteristics determined by the viewing angle. These images 

generates a proportional photo current at the corresponding photodiodes. The result is a sampled 

reproduction of the object. Image from [29] 

 

The image formation involves two steps: measurement and processing. For the former, the camera has 

a sensor (CCD or CMOS) which provides with a directional sampling of the irradiance passing through 

each point in the sensor. Through the processing step, the captured light field can be used to recover a 

conventional image making focus on any depth of the original scene. The key rationale behind this 

processing comes from the projection-slice theorem, proposed by Bracewell in 1956 [30]. 

By the other hand, plenoptic photography also can be used to compose images from different 

perspectives. As under each microlens lays a set of pixels (as many as the microlens size or sensor 

resolution), they capture the rays coming from different directions of the same scene. Therefore, if the 

image is reconstructed employing the pixels from the same position under each microlens, it's possible 

to obtain the image in perspective, built upon the rays with the same angle from the scene. Figure 4 

depicts the same scene from two different perspectives. 
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Figure 4. At left is a light field of several insect legs, captured in a single snapshot by a microscope 

into which a microlens array has been inserted. The objective was 25x/0.45NA. Magnifying a portion 

of this light field (inset), we see the circular subimages formed behind each microlens. Each is a view 

of the microscope’s aperture. At right is a sequence of perspective views (top) and a focal stack 

(bottom), computed from this light field. (Extracted from [31]) 

Segmentation Fusion 

 

Segmentation fusion is the common terminology used in the literature to refer to the task of finding a 

segmentation solution from multiple images of a single scene, or from a single image but using several 

algorithms, or various instances of the same algorithm. These scenarios are referred as “n images, one 

algorithm” and “one image, n algorithms” paradigms respectively. 

Several strategies have been proposed to deal with the synthesis of a single solution from multiple 

segmentations. The most common strategy applied to solve the problem of segmentation fusion consist 

in obtaining n different segmentation hypotheses and applying a consensus strategy to gather and unify 

these n results into a single solution. 

In [32] the authors propose an approach to the “n images, one algorithm” paradigm based on binary 

partition trees. This is an interesting work because instead of applying the segmentation fusion as a post-

processing step, it attempts to handle the segmentation fusion applying the consensus decision during 

the construction of a hierarchical model representation which unifies the n images. The authors claim 

that solving the fusion decision during an early phase results in two benefits. First, it allows to define a 

hierarchical framework for the segmentation problem which is flexible and can be easily instantiated 

according to the field of application. Second, by operating the fusion on the internal data structures 

involved in the algorithmic construction of the hierarchy, instead of spatial regions of the segmentation 

maps, existing machine learning solutions for “non-spatial” data fusion can be used [33]. They use 

Binary Partition Trees (BPTs) [34], a technique widely applied in the field of remote sensing, for the 

hierarchical model. Authors illustrate and explain the benefits of their approach on two cases of remote 

sensing images: mono-date multi-imaging on urban areas, and multi-date imaging on agriculture areas. 

With the study cases they conclude that the experiments carried out on satellite multi-image datasets 

shown that the quality of the induced morphological hierarchies are sufficient to further perform 

improved segmentation, however, this preliminary work doesn't provide any quantitative comparisons 

with other segmentation schemes or with a gold standard. 

In this sense, to count on apriori information as reference, several works [35-37] apply atlas-based 

segmentation methods. These methods have the property of segmenting the image with no well-defined 
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relation between regions and pixels intensities. If  the  information  about  difference between  these  

regions  is  incorporated  in  the spatial  relationship between  them,  other  regions,  or  within  their  

morphometric characteristics,  the  atlas-based  segmentation  is  expected  to work well. In [35] the 

authors propose two approaches for combining multi-atlas segmentation and intensity modelling based 

on segmentation using expectation maximisation (EM) and optimisation via graph cuts. In [36] the 

authors present a framework to address the consequent problems of scale in multi-atlas segmentation. 

In this work a custom subset of atlases was selected for each query subject and provided more accurate 

subcortical segmentations than those given by non-selective combination of random atlas subsets. This 

approach was tested using a database of 275 atlases. An image based similarity criterion as well as a 

demographic criterion (age) in a leave-one-out cross-validation study were used. This work concludes 

that selecting atlases from large databases for atlas-based brain image segmentation improves the 

accuracy in the final segmentations. Additionally this work shows that the image similarity is a suitable 

selection criterion. Authors also give results based on selecting atlases by age which demonstrate the 

value of meta-information for such selection. Jia et al [37] present a multi-atlas-based framework for 

the segmentation of n target images. In this approach two strategies were described: a tree-based 

groupwise registration method for concurrent alignment of both the atlases and the target images, and 

an iterative groupwise segmentation method  

Another typical approach for the segmentation task is the Markov Random Field (MRF) [38-40]. A 

MRF is similar to a Bayesian network in its representation of dependencies; the differences are that 

Bayesian networks are directed and acyclic, whereas Markov networks are undirected and may be cyclic. 

In [38] a multi-channel image segmentation method that uses a MRF region label model with adaptive 

neighbourhoods is described. Bayesian inference is applied to realize the combination of evidence from 

different knowledge sources. In such a way, the optimization of the shape of a neighbourhood set is 

achieved by following a criterion that makes use of hypothesis on the Markovian property by exploiting 

the local image content. The authors illustrates the results of this strategy through optical remote sensing 

data. Another segmentation algorithm based on MRF processing was proposed in [39]. The images are 

segmented initially by growing regions of similar colour values. Then, for refining initial clusters in a 

feature space they use a MRF processing. That processing works with the KNN classification rules 

among the neighbours of a pixel. It has been observed that, though using only chromatic information, 

good segmentation results are obtained. The luminance information improves the quality of 

segmentation in some cases. Results for different colour spaces such as the OHTA coordinate space, 

YIQ, CIELAB and UVW are also presented. On the average the performance in the OHTA space was 

better than the others. In [40] a simple MRF model for unsupervised image segmentation based on image 

features which has a new processing pipeline is proposed. The traditional two-component MRF model 

for that segmentation requires training data to estimate the necessary parameters for the model, and thus 

is unsuitable for unsupervised segmentation. The proposed pipeline solves this problem by introducing 

a function-based weighting parameter between the two components. Using this method, the simple MRF 

model is able to automatically estimate those model parameters, and to produce accurate unsupervised 

segmentation results. Experiments demonstrate that the proposed algorithm is able to segment various 

types of images (gray scale, color, texture) and it achieves an improvement over the traditional methods.  

In [41] authors propose a maximum-likelihood clustering for this task. The clustering registers all the 

images in a multisensor ensemble simultaneously. Experiments involving rigid-body and affine 

transformations show that the clustering method is more robust and accurate than competing pairwise 

registration methods. Moreover, the clustering results can be used to form a rudimentary segmentation 

of the image ensemble. 

Another clustering approach was reported in [42]. The segmentation fusion procedure combine several 

segmentation maps associated to much simpler partition models in order to finally get a more reliable 

and accurate segmentation result. The label fields to be fused are obtained by K-means clustering on an 

input image, expressed in different colour spaces. The fusion strategy aims at combining these 

segmentation maps with a final clustering procedure using as input features the local histogram of the 

class labels, previously estimated and associated to each site and for all the initial partitions. This fusion 

framework has been successfully applied on the Berkeley image database. By the other hand [43] reports 
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its results using the same database, but the authors address the parameter selection problem by applying 

a general ensemble clustering methods in order to produce a consensus segmentation. The main 

contribution consists of applying and comparing a broad variety of representative and widely used 

ensemble clustering methods for the segmentation combination problem.   

The first step consist in obtaining m segmentations using 3 state-of-art segmentation models to generate 

3 ensembles: TBES ensemble (Texture and Boundary Encoding-based Segmentation), UCM ensembles 

(Ultrametric Contour Map) and TBES & UCM ensembles. Each ensemble is composed by 10 

segmentations obtained by varying the parameter values of the segmentation algorithms used to generate 

the ensemble. The ensemble clustering methods used were: BOK (Best of K), BOEM (Best One Element 

Moves), EAC SL/AL (Evidence Accumulation), RW (Random Walker), Hypergraph based methods, 

Information theory based methods, Kernel based methods and Clustering based on semidefinite 

programming. The results obtained were compared with the human segmentations of each image. 

The results suggest that good segmentation results may be obtained by using general ensemble clustering 

methods without knowing ground truth. In this context it must be emphasized that in many application 

scenarios, supervised learning is not applicable because the ground truth information is not available. 

Thus, ensemble clustering methods are preferred in scenarios where parameters of segmentation 

algorithms are unknown. 

Finally, in [44] authors propose a method which exploits the semantic information of images. They 

propose a novel method for weakly supervised semantic segmentation. The training images are labelled 

only by the classes they contain, not by their location in the image. On test images instead, the method 

predicts a class label for every pixel. The main innovation of this proposal is a multi-image model (MIM) 

a graphical model for recovering the pixel labels of the training images. The model connects superpixels 

from all training images in a data-driven approach, based on their appearance similarity. For generalizing 

to new test images they integrate them into MIM using a learned multiple kernel metric, instead of 

learning conventional classifiers on the recovered pixel labels.  

Conclusions and Future Work  

In this work we inquire about the feasibility of applying segmentation fusion techniques to plenoptic 

ophthalmological images. In the first part we reviewed the problem of image segmentation in 

ophthalmology. We outline some of the strategies proposed to segment anatomic structures such as the 

optic disc, the fovea, and retinal blood vessels, and abnormal elements such as exudates, 

microaneurysms, or haemorrhage from digital colour fundus images. Then we detailed the 

characteristics of plenoptic images, and finally we described the problem of segmentation fusion along 

with some proposals and applications of this problem to different environments. 

The segmentation fusion approaches found in the literature can be broadly classified into atlas-based 

methods, statistical characterizations approaches, and machine learning based techniques. For the 

purpose applying segmentation fusion into plenoptic images, we consider that both statistical and 

machine learning techniques would be appropriate, but only with unsupervised methods due to the lack 

of a gold standard for ophthalmic plenoptic image. We also identify the atlas-based approach as the 

more difficult to adapt to our target scenario because with the available data in this field there would be 

difficult to build reliable ophthalmic atlases. However, many heuristics from that approach would be 

exploited, for example the a priori information related with the shape, localization and geometric 

relations of the fovea, macula and blood tree. 
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