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Abstract. It is usually assumed that co-expressed genes suggest co-regulation in the
underlying regulatory network. Determining sets of co-expressed genes is an important task,
where significative groups of genes are defined based on some criteria. This task is usually
performed by clustering algorithms, where the whole family of genes, or a subset of them, are
clustered into meaningful groups based on their expression values in a set of experiment.

In this work we used a methodology based on the Silhouette index as a measure of cluster
quality for individual gene groups, and a combination of several variants of hierarchical clustering
to generate the candidate groups, to obtain sets of co-expressed genes for two real data examples.
We analyzed the quality of the best ranked groups, obtained by the algorithm, using an online
bioinformatics tool that provides network information for the selected genes.

Moreover, to verify the performance of the algorithm, considering the fact that it doesn’t
find all possible subsets, we compared its results against a full search, to determine the amount
of good co-regulated sets not detected.

1. Introduction
New technologies for genomic analysis measure, simultaneously, the expression of thousand
of genes. An important goal in some studies is to find sets of co-expressed genes, to study
co-regulation and biological functions. This task is usually performed by clustering algorithms,
where the whole family of genes, or a subset of them, are clustered into meaningful groups based
on their expression values in a set of experiment. These techniques provide insight on the possible
co-regulation between genes, under the hypothesis that co-expression may indicate evidence for
co-regulation, and these hypotheses of co-regulation must eventually be corroborated or be
rejected by further experiments. Existing clustering algorithms are based, usually, on a global
approach [1, 2, 3, 4, 5, 6], or on just pairwise analysis [7]. While some of them provide methods
for the selection of the best number of clusters [2], they result in very large number of clusters,
depending on the number of groups required or determined by the algorithm. The large size of
these sets makes improbable their use as hypothesis generator.

A more comprehensive approach consist on the analysis of co-expression of all possible sub-sets
of genes. While simple, this approach fails because of the need to analyze an exponential number
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of candidate sets. This search of meaningful set would be impractical if the number of available
genes for the analysis is large, which it is usual in this field.

In this work we present a new algorithm, that combine the particularities of clustering
hierarchical algorithm with individual cluster validation based on the Silhoutte index, to generate
a ranked list of gene group, avoiding the exhaustive search, but providing high quality results.
As in [2] we use the Silhouette index as a quality /homogeneity measure, but instead of using it
to generate the partitions, we use it to select the best sets, from several partitions, obtained by
different variants of hierarchical clustering.

This approach permits the use of many different clustering algorithms, combining the best
results of each one of them, avoiding the use of a full search approach, while still providing, as
shown in the results, a good approach to the optimal results. In the next section we present
a) an introduction to pattern recognition tools, b) the proposed algorithm, c¢) the result in
genomic data. The final conclusions show that this algorithms could result in a useful tool to
the researchers as preliminar technique to data analysis.

2. Approach

2.1. Pattern Recognition

Pattern Recognition techniques have been widely used to identify object according to different
type of features [8]. There are two basic types of pattern classification, supervised and
unsupervised classification. Supervised classification uses samples previously classified to design
the classifier, to be applied to new patterns. Unsupervised classification groups unclassified
patterns based on similarity. Clustering algorithms is a collection of techniques for unsupervised
classification [9]. The clusters are formed according a similarity measure, which is usually defined
as the proximity of the points according to a distance function. One of the distance function
often used is the Euclidean distance:

d(z,z) =| = — z [|= V(z — 2)"(x — 2) (1)

where z and z are two vectors. In this case, when minor is the distance between two elements,
major is their similarity.

In this work, the objects to be classified are genes. The data consists of a set of m samples
51,59, .., 5y and n genes g1, g9, ..gn, that are normally represent by a matrix of two dimension
M where M(i,j) represent the expression of gen g; for the sample S;. The expression of each
gen g;, across all samples, correspond to a row of matrix M, and it is represented by a feature
vector X;(zi,, Ziy, .., Ti,, ), where each value z;; represent the expression of geng; for the sample
S;. The feature vector is then composed by m samples, so that the regions of the partition H
are in space R,,.

Each gen can be assigned to one of k£ possible groups, and the result of a clustering algorithm
is a partition of the set of genes, as a set W = Wy, Wy, .., Wi, where each W; is a group of genes
with certain degree of similarity.

2.2. Hierarchical Clustering

The Hierarchical Clustering is one of most used clustering algorithms in bioinformatics [10]. In
this algorithm, it is not necessary to know previously the number of classes, to divide the total
set of elements according their characteristics, since it generates a partitioning tree that can
be later used to generate any amount of clusters. At each iteration, the two closest clusters
are joined together (based on some measure of distance) and form a new one. If the number
of classes is known beforehand, the algorithm ends when you reach the K number of classes
searched. If the number of classes is not previously known, the algorithm can be continue its
process until there is only one large cluster with all the elements on it. The staggered manner in
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which the clusters are gathering can be displayed on a tree diagram called dendrogram, where
successive junctions between groups are showed with increasing distance from the root. Given a
set of N items to be clustered, and an N x N distance (or similarity) matrix, the basic process
of hierarchical clustering [11] is described here:

(i) Start by assigning each item to a different cluster, so that for N items, there are N clusters,
each containing just one item. Let the distances (similarities) between the clusters be the
same as the distances (similarities) between the items they contain.

(ii) Find the closest (most similar) pair of clusters and merge them into a single cluster, so that
now there is one cluster less.

(iii) Compute distances (similarities) between the new cluster and each of the old clusters.
(iv) Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

Step 3 can be done in different ways, which is what distinguishes single-linkage from
complete-linkage and average-linkage clustering. In single-linkage clustering (also called the
connectedness or minimum method), the distance between two clusters is the shortest distance
from any member of one cluster to any member of the other cluster. If the data consist of
similarities, the similarity between two cluster is the largest similarity from any member of
one cluster to any member of the other cluster. In complete-linkage clustering (also called the
diameter or maximum method), the distance between two clusters is the largest distance from
any member of one cluster to any member of the other cluster. In average-linkage clustering,
the distance between two clusters is the average distance from any member of one cluster to any
member of the other cluster.

2.8. Quality measures

A common problem of clustering algorithms is the validation of results. There are basically
two types of validation. Internal validation, which is based on calculations performed on the
resulting clusters such as the separation between them, its roundness or closely packed. This
type of validation does not require additional information to that reviewed. The other is the
comparison of partitions, which can be obtained compared with other partitions generated by
the same algorithm with different parameters (relative validation), or with the actual partition
of the original data (external validation) [12]. One of the methods of internal validation used is
Silhouette index, which measures the quality of clustering as the average quality of its elements
[13]. The Silhouette value for an element ranges between —1 and 1. A high Silhouette value
indicates that the element is closer to its own cluster elements than to the ones that do not
belong to its own cluster.

To define the Silhouette index for the points, two measures need to be defined first. Lets IV
be the number of clusters. Let X € C a point (element) that belongs to the cluster Cj, and let
ng the number of elements of Cy, then the first measure a(X), the average distance of X to the
points of Cf is defined by:

1
a(X) = > dX,Y)
ne — 1
Y €eCk,Y#X
The second measure, b(X), the average distance to the nearest cluster, for a point X € Cj,

is defined by:

1
b(X) = i — d(X,Y
(X) h:lr.I.llifI,lhyék n Y; (X, Y)
h
Finally, the Silhouette index S(X) is defined by:
b(X) — a(X)

S(X) = maz(a(X),b(X))
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Then, the Silhouette index for a cluster is defined as the average Silhouette of its points:

s =— 3 sx)

n
k XeCk

It can be seen that if b(X) > a(X) (the point is closer to points in the same cluster than
points in other clusters) then S(X) is close to 1. If this happens for most of the points in a
cluster C, then the Silhouette S(C) is also close to one, indicating that it is isolated from other
clusters.

In the other hand, if b(X) ~ a(X), (there are points outside the cluster closer to X than
points in the same cluster), then S(X) is close to 0. If this happens for most of the points in a
cluster C, then the Silhouette S(C) is also close to zero, indicating that it is mixed with some
other clusters.

For our analysis, we use a slightly modified measure of cluster silhouette. In this case, for
each set C of points, to compute its Silhouette we assume that all the points that do not belong
to C belong to a second cluster C¢, and the modified silhouette index is computed based on this
2-clusters situation:

h(X) = ni > d(X,Y)
YeCe

3. Methods

3.1. Proposed algorithm

The objective of this study is to select subsets of genes highly correlated. In the expression
profile space of genes (expression through all samples), provide by a distance function, where
each genetic profile is represented with a point of R, this corresponds to find compact sets that
are separated to other points sets. A naive way to find these compact and separate groups would
consist in measuring the compactness of all possible subset of the NV profiles. A suitable measure
to measure compactness may is the Silhouette Index [13], successfully used by the authors for
other purposes [14, 15].

One problem of this approach is that the amount of subsets grows up in a combinatorial form
with the number of genes. For example for a set of 2000 genes, the number of subsets to evaluate
is 22000 For this reason it is required some technique to find the best subsets (or many of them)
avoiding the exhaustive search. To solve this problem, in this paper we propose to limit the
family of subsets where the search, using hierarchical clustering to generate a family of candidate
subsets, and then evaluate the modified Silhouette index only on those subsets. An application
of the hierarchical clustering algorithm generates a total of 2 x N subsets to process. Because
there are so many variants of hierarchical clustering, an important problem is to determine the
best variants of hierarchical clustering for the task of detecting co-expressed genes on genomic
data.

In a previous work [16] we studied the ability of variants of hierarchical clustering
(complete-linkage, average-linkage, single-linkage) to detect the best subsets using Silhouette
index as quality measure. To this purposes we used four different sets of simulated data with
known result. Keeping the size of the artificial sets small, we were able to analyze all possible
groups, sorting them by Silhouette Index, and use that information as gold standard to evaluate
the performance of variants of hierarchical clustering to detect the best subset.

As an additional approach, we combine all the variants, forming a large sets of candidate
groups, still smaller than the maximum 2% sets, and select the best groups from this set. This
approach extends the search space, relative to the use of only one algorithm, maintaining the
computational requirements still low. Another advantage of this approach is that new clustering
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algorithms may be added to the pool, generating more candidate groups, therefore improving
the overall quality of the result.
The main steps of the proposed algorithm are:

Apply to the data some variants of hierarchical clustering.

e For each algorithm, register all the possible branches in the dendrogram three (one-gene
groups are not processed).

Compute the Silhouette index for each group (against the rest of the genes)

Select those groups with Silhouette index above a threshold

The important step in this method, that sets it apart from previous methods, is that it does
not use just one clustering (partition) of the genes, based on an algorithm, but a larger set of
groups, defined by the dendrogram tree from the hierarchical clustering algorithms. Allowing
the evaluation (via the modified Silhouette index) of intermediate groups (ones not showing on
a optimal partition) avoids issues were a large group is not part of that partition, but would be
a good candidate because of its compactness.

In the previous work, the analysis was aimed at finding which variant of hierarchical method
detected a major proportion of the groups with highest Silhouette (determined by a full search in
simulated contexts). In these analysis, and additional ones realized for this work, it was visible
that no variant has better performance, except when using a combination of all the variants.

In the next sections we apply this approach, based on the combination of variants to generate
the candidate clusters, and the modified Silhouette index to rank, to search for correlated genes
in two real data situations.

4. Application Examples

In this section we describe two application examples, where the algorithm is applied to two
different sets of data: microarray based expression, for diabetes, and QTLs, for listeria. In
both cases we applied the algorithm to detect significant sets of genes/QTLs, and analyzed their
significance, based on existing knowledge about them.

4.1. Listeria

In the first application example, we used data of mouse susceptibility to monocytogenes
listeria [17, 18]. This study consists in the analysis of the relation between QTLs (Quantitative
trait Loci, stretches of DNA containing or linked to the genes that underlie a quantitative trait)
and the survival time of 120 mouses that have been infected with listeria, where survival is
defined by a survival time of more than 240 hours. The dataset consists in 35 surviving mice
and 85 un-surviving, analysing 133 QTLs for each mouse. After filtering those QTLs with
missing data, only 28 QTLs were retained.

It is important to note that here we are using QTLs instead of genes as target for our search
of correlation. Because of the nature of the model used here is not restricted to expression
information, the same analysis can be applied to discrete QTL studies.

To verify the performance of the algorithm in this context, considering the small amount of
markers under study, we were able to perform a full search of QTLs groups (up to 7 elements),
computing the Silhouette index of all of these subsets. The performance of the search algorithm
(based on clustering) is measured based on the number of best subsets detected.

Table 1 shows the comparison of results between full search and combination of variants
of hierarchical clustering. We can see in the table that the 8 most significant groups were
properly detected by the algorithm. Still more, the top groups of 2, 3, 4, 5 and 6 elements, were
successfully detected by the algorithm.
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Table 1. Comparison of results between full search and combination of variants of hierarchical
clustering. The best 8 groups were successfully detected by combination algorithm.

Id_All Sil Id_combination | Num_elem | Groups Member
1 0.90661 1 2 8,9
2 0.86923 2 2 3,4
3 0.86788 3 2 1,2
4 0.814008 4 2 25,26
5 0.736231 5 3 8,9, 10
6 0.701954 6 3 24, 25, 26
7 0.672453 7 2 11,12
8 0.66783 8 4 1,2,3,4
18 0.592628 9 2 14,15
21 0.563286 10 2 17,18
24 0.554229 11 5 8,9,10,11,12
37 0.49119 12 3 16,17,18
44 0.452103 13 6 8,9,10,11,12,13
69 0.393421 14 5 14,15,16,17,18
71 0.387993 15 4 23,24,25,26
327 | 0.293433 17 6 14,15,16,17,18,20
346 | 0.290286 18 6 6,14,15,16,17,18

4.2. Diabetes
In this second example of biological application we run the algorithm on microarray data. This
data was obtained from a previous study that analyzed the expression profiles of obese and thin
subject [19]. This study presents the expression profile to 18 subjects, 13 with obesity and 5
without, using a U133A chip of Affymetrix. From the original dataset, with 22283 genes, only
the most variable 1000 genes were preselected for the analysis. In this case, it is not possible to
compare the resulting groups with a full search, since there are 2! possible subsets. Therefore,
the resulting groups/sets were studied based on actual biological knowledge about them.

We restricted the analysis to the top eight ranked sets, described in Table 2. We verified if
the genes found on these groups, have assigned similar biological functions.

It should be noted that in group 1, even if there are two different Affymetrix probes
204550_z_at and 215333_z_at, they make reference to the same gene. The same situation is
repeated for group 6.

Table 2. Sets detected with higher Silhouette using a combination of variants of hierarchical

algorithms.
Group | Silhouette | Size Probes (Affy Ids) Analysis
1 0.9548 2 204550 x_at , 215333 x_at Unique gene
2 0.9429 3 | 204418 x_at , 204550 x_at , 215333 x_at 2 Genes from the same family.
3 0.82689 2 207831 x_at , 207907_at No relationship found.
4 0.80904 2 201639_s_at , 201904 _s_at No relationship found.
5 0.79401 2 205175_s_at , 213670 _x_at Indirect metabolic Relationship
6 0.79394 2 200966 _x_at , 214687 _x_at Unique gene
7 0.79345 2 200991 s_at , 202676 x_at Common function:Protein binding
8 0.79343 3 201379 _s_at , 207831 x_at , 207907 _at Common function:Protein binding

The most interesting case identified is Group 2. In this group there are 3 probes, 2 of
them reference to the same gene called GSTM1 (Glutathione S-transferase mu 1). The relation
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between these 2 probes and the third one, which references to gene GSTM2 (Glutathione
S-transferase mu 2) is that all of them are members of the same family, and they are involved
in metabolic process.

We analized these genes with the GeneMania bioinformatic tool, using the Co-expression
option.  GeneMania searches large biological datasets to find related genes, including
protein-protein, protein-DNA and genetic interactions, pathways, reactions, gene and protein
expression data, protein domains and phenotypic screening profiles [20] . Figure 1 show the
result of the analysis of co-expression for groups 2, 5 and 66. The figure 1 shows a large amount
of linkage between the genes of the selected groups. Most of the associations are obtained from
the Gene Expression Omnibus database (GEO), but GeneMania tool only collect data associated
with publications. To group 2 some functions associated are glutathione transferase activity,
glutathione derivative metabolic process, peptide metabolic process, peptide binding, modified
amino acid binding, etc.

To third and forth group have not documented relationships. From this analysis, they could
be good candidates for further analysis of co-regulation, or other biological relationship.

The fifth group shows interesting relationships. The first Affymetrix Identifier
(205175_s_at)reference to a locus NSUN5P1. This locus represents a transcribed pseudo gene of a
nearby locus on chromosome 7, which encodes a putative methyltransferase. Diseases associated
with NSUN5P1 include Williams-Beurem Syndrome. The other group member references to the
KHK gene (213670_x_at). The KHK gene encodes ketohexokinase that catalyzes conversion of
fructose to fructose-1-phosphate. The product of this gene is the first enzyme with a specialized
pathway that catabolizes dietary fructose (GeneCard information [21]). Due to the fact that
NSUN5P1 is a pseudo gene, we can not do an analysis of relation with the KHK gene (probe
213670 x_at). For this reason we search genes associated to Williams-beuren disease with
pathways related to the KHK gene.

In this search we found the MLXIPL gene that encodes a basic helix-loop-helix leucine zipper
transcription factor. This protein forms a herodimeric complex and binds and activates, in a
glucose-dependent manner, carbohydrate response element (ChoRE) motifs in the promoters of
triglyceride synthesis genes. This gene is deleted in Williams-Beurem Syndrome. Both genes
are involved in metabolism process. Figure 1 show the result of a co-expression analysis between
MLXIPL and KHK gene, using the GeneMania bioinformatic tool.

For groups 7 and 8 we used GeneCards for analysis. GeneCards is a searchable, integrated
database of human genes that provides information on all known and predicted human genes [21].
For both groups their members have a common function, that is protein binding, according to
GeneCards.

Other case analyzed was a big group with eleven elements, this group had been ranked in the
position 66, and its Silhouette index is 0.7044, large value based on our past experience with the
Silhouette index. We searched the elements and ran a co-expression analysis with GeneMania.
In figure 1 show the relation between some elements. To verify the quality of the result we select
randomly 11 genes and ran the same analysis, the result obtained was a graph more dispersed
(Graphic not included here).

5. Discussion
In this work we apply a simple but powerful method to identify groups of genes/markers that
are compact and well separated from other genes/markers, using the Silhouette index to rank
the sets, and a combination of several variants of hierarchical clustering to search the best sets.
In one case, due to the small size, the resulting groups were compared to the results from full
search. In the second case, the resulting groups were analyzed using standard bioinformatics
tools, verifying strong relationship between the genes in the top groups.

The algorithm provides a balance between search time and detection rate. It avoids the full
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Figure 1. Results from GeneMania tool: a) Graph for group 2, where GSTM1 and GSTM2
are closely related; b) Graph for group 5, where KHK and MLXIPL gene are closely related; c)
Graph for group 66, where the 11 elements are related

search, which can be impractical for large number of genes, with the cost of missing some good
sets, but it is able to detect most of the top ranked sets, which is not usually possible by using
only one clustering algorithm.

The effectiveness of this algorithm is related to the ability of the Silhouette index to score
properly compact groups, which are at the same time separated from other groups of genes.

6. Conclusion

With this analysis we verified the results of the proposed tool, and we considered that is useful
for biologists or researchers in computational biology interested in generating new hypotheses
about the co-expression of genes, or genomic markers like QTLs, which are not provided in
most standard analysis tools. This algorithm will generate quickly a set of good groups on
base of Silhouette index, and combines the advantages of each variant of hierarchical clustering
algorithm. Future work includes the analysis of other indices of group quality, besides Silhouette,
and the application to new datasets, including SNPs.
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