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Abstract. A far-red sensitive unsymmetrical squaraine dye SQ-41 has been synthesized and 

subjected to the fabrication of dye-sensitized solar cells by varying the various parameters in 

order attain optimum photoconversion efficiency (). It has been demonstrated that an optimum 

ratio of dye to coadsorber, thickness of mesoporous TiO2 layer, redox electrolyte and surface 

treatment are necessary to enhance overall external In the case of surface treatment, it has 

been shown to exhibit pronounced device performance when both of the FTO as well 

mesoporous TiO2 surfaces were treated with aqueous TiCl4. In spite of very high molar extinction 

coefficient of dye SQ-41,   10-12 m thickness of mesoporous TiO2 was found to be necessary 

to attain the maximum  

1. Introduction                                                                                                                                                                  
Dye sensitized solar cells (DSSCs) consisted of dye-adsorbed mesoporous TiO2 as photoanode, Pt 

coated transparent conductive oxide (TCO) glass as cathode and a suitable electrolyte have been 

emerged as low cost next generation solar cells with minimal adverse impact on environment during its 

fabrication [1]. Research and development on various aspects of DSSCs in the last about 20 years led to 

the achievement of photoconversion efficiency ( over 11 % even with sensitizers having photon 

harvesting mainly in the visible region of the solar spectrum [2-3]. Solar spectrum is consisted of   

photons from varying wavelengths encompassing from ultraviolet to infra-red (IR). Nearly quantitative 

photon harvesting in the visible wavelength reason has already been achieved by potential organic 

sensitizers indicating the need for development of suitable sensitizing dyes having efficient photon 

harvesting in the higher wavelength region [4-5]. To enhance the external power conversion efficiency 

even higher, it is highly desired to develop novel and efficient sensitizing dyes that can harvest photons 

from far-red to NIR wavelength region. Utilization of such dyes in combination with already developed 

as well as commercially available potential visible light absorbing sensitizers in hybrid or tandem DSSC 

architecture is expected to enhance the overall efficiency of the DSSCs. 

In this context, squaraine dyes serve as one of the model representatives fulfilling this demand owing 

to very sharp and narrow light absorption that can be tuned from visible to IR wavelength region by 

judicious molecular design [6]. In past two decades after inception of DSSCs, a lot of works have been 

conducted for optimizing various DSSC fabrication parameters using visible light absorbing dyes in 
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order to enhance the  [7]. NIR dyes are typically different as compared to their visible light absorbing 

dye counterparts due to narrow full width at half maximum and very high molar extinction coefficients. 

Therefore, such optimization parameters can be partially applied for NIR dyes due to their intense light 

absorption and enhanced aggregation behaviour owing to their relatively planer molecular structure and 

extended -conjugation. This article deals with the influence of various DSSC fabrication parameters 

such as thickness of mesoporous TiO2 layer, surface treatment, concentration of the dye-aggregating 

agent chenodeoxycholic acid (CDCA) and nature of redox electrolyte upon the photovoltaic behaviour 

using a model far-red  squaraine dye SQ-41. Structures of dye SQ-41 and CDCA have been shown in 

the inset of Fig. 1. 

2. Materials and Methods 

Far-red sensitive unsymmetrical squaraine dye (SQ-41) has been synthesized and its structure has been 

characterized as per our earlier publication [8]. Electronic absorption spectra of the dye in ethanol 

solution as well as thin film of dye absorbed on mesoporous TiO2 has been measured using UV-visible 

spectrophotometer (JASCO, V670). DSSC was fabricated using Ti-nanoxide D/SP and HT/SP pastes 

(Solaronix) on fluorine doped tin-oxide (FTO) glass by doctor blading followed by backing at 450oC 

for 30 min. This coating and backing process was repeated multiple times to prepare TiO2 coated FTO 

substrates of variable thicknesses (2 - 20 m). In order to optimize the surface properties of FTO and 

TiO2 layers, TiCl4 surface treatment was also conducted. This surface treatment was performed by 

dipping the substrates in 40 mM solution TiCl4 in water at 70oC for 30 minutes followed by the backing 

at 500oC for 30 min. This makes a very thin and compact TiO2 layer on the substrates. The TiO2 coated 

FTO substrate thus obtained was subjected to dye adsorption at room temperature for 4 hours. Dye bath 

solution for dye adsorption was prepared by making 0.2 mM dye solution in ethanol using 10 mM of 

CDCA as dye aggregation preventing agent. This optimum ratio of dye to CDCA was selected based on 

our previous publication using this dye [9].  A thin catalytic layer of Pt was coated on FTO glass to use 

as counter electrode. Three different kind of iodine based redox electrolytes (A, B and C) have been 

used to see the implication of the constituents and their relative concentration as per the recipe in the 

reported literatures [10-12].  

      Electrolyte A was consisted of I2 (0.05 M), LiI (0.5 M), 1,2-dimethyl-3-propylimidazolium iodide 

(0.6M) and t-butylpyridine (TBP, 0.5 M) in acetonitrile [10].  Electrolyte B was consisted of I2 (0.05 

M), LiI (0.5 M), 1,2-ethyl-3-methylimidazolium dicyanamide (0.6M) and TBP (0.6 M) in acetonitrile 

[11]. Electrolyte C was consisted of I2 (0.05 M), LiI (0.5 M), 1,3-dimethylimidazolium iodide (0.5M), 

Guanadinium thiocyanate (0.1 M) and TBP (0.5 M) in a mixture of acetonitrile and valeronitrile (85:15) 

[12]. A 25 m thick Himilan film (Mitsu-Dupont) was used as hot melt spacer. Device area of (0.2025 

cm2) was precisely controlled using a black metal mask on the DSSC during the photovoltaic 

measurements every time. Photovoltaic performance of DSSC thus fabricated was measured with a solar 

simulator (CEP-2000, Bunko Keiki, Japan) equipped with Xenon lamp for the light exposure. The 

spectrum of the solar simulator and its power were adjusted to be at global air mass 1.5 condition (100 

mW/cm2) using a spectroradiometer (LS-100, Eiko Seiki, Japan). Photocurrent action spectra of the 

solar cells were also measured with a constant photon flux of 1 x 1016 photons/cm2 using an action 

spectrum measurement system connected to the solar simulator.  

       

3. Results and Discussion 

3.1. Photophysical Characterization 

Figure 1 shows the electronic absorption and fluorescence emission spectra of sensitizing dye SQ-41 in 

ethanol solution along with the thin film adsorbed on mesoporous TiO2. Electronic absorption spectrum 

shows a sharp absorption maximum (max) at 634 nm with very high molar extinction coefficient of 1.98 

x 105 dm3.mol-1.cm-1 which is associated with the -* electronic transition with a small vibronic 

shoulder around 590 nm. At the same time, emission spectrum shows slightly red-shifted emission 

maximum at 642 nm having very small Stoke shift of 8 nm. This spectral behaviour is a typical 

characteristic of squaraine dyes and very small Stoke shift indicates the conformational rigidity of this 
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molecule in the excited state. On the other hand, electronic absorption spectrum of this dye in solid state 

shows a little bathochromically shifted max of 647 nm along with spectral broadening. This is attributed 

to the interaction of dye with TiO2 in the condensed state.    

 

 
Figure 1. Electronic absorption spectra of SQ-41 in ethanol solution (5 M), thin film on mesoporous 

TiO2 and fluorescence emission spectrum in ethanol solution (1 M). Inset shows the molecular 

structure of sensitizer SQ-41(a) and coadsorber CDCA (b).   

 

3.2. Influence of TiCl4 Surface Treatment  

Photoanode in DSSC is consisted of FTO/TiO2/dye interfaces and is the most important component of 

DSSCs which must be optimised for optimum device performance. Actually mesoporous TiO2 is 

composed of interconnected nanoparticles which provides very high internal surface area promoting the 

high dye loading. At the same time, these interconnected TiO2 nanoparticles offer not only limitation to 

facile electron transport but also charge recombination with electrolyte ions also. Since it is mesoporous 

in nature and electrolyte ions are also in contact with FTO surface, it offers the possibility of charge 

recombination between FTO and electrolyte ions also. To circumvent these problems application of a 

very thin layer of compact TiO2 on FTO as well as TiO2 has been found to be beneficial and used by 

many DSSC researchers. Surface treatment using aqueous TiCl4 followed by backing is one of the most 

commonly used methods to prepare very thin compact layer of TiO2. Apart from charge recombination 

blocking layer, this compact TiO2 layer has been reported to play various roles like to increase the TiO2 

surface area [13], to enhance electron transport [14], to promote light scattering [15] and dye anchoring 

[16] finally leading to enhanced overall device performance. In this work, attempts have been made to 

investigate the role of this compact layer on overall device performance and demonstrate that which one 

plays the predominant role. In order to predict this effect more explicitly, other factors such as thickness 

of mesoporous TiO2 layer (12-14 m), dye (SQ-41), dye/CDCA ratio (1/50) and electrolyte (Electrolyte 

B) were kept the same. 

       Figure 2 shows the current-voltage (I-V) characteristics of DSSCs based SQ-41 having different 

surface treatment conditions under simulated solar irradiation along with the photovoltaic parameters in 

terms of short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) and  are 

summarized in the table 1. It can be clearly seen from this figure and table 1 that surface treatment of 

FTO has only little effect on while surface treatment on mesoporous TiO2 layer leads to drastic 

improvement of Jsc from 4.15 mA/cm2 to 7.04 mA/cm2 as compared to that obtained for without any 

surface treatment. Best DSSC performance with external power conversion efficiency 3.54 % was 

obtained when both of the FTO and TiO2 surfaces were subjected to TiCl4 surface treatment. In order to 

explain this profound enhancement of Jsc upon surface treatment, photocurrent action spectra also 

known as plot of incident photon to current conversion efficiency (IPCE) as a function of wavelength 
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of monochromatic light irradiation was also measured and has been shown in the Fig. 2. Action spectra 

shown in Fig. 2 clearly reveal the far-red photon harvesting by sensitizers and maxima of the observed 

IPCE is in accordance with the Jsc measured in the I-V characteristics.       

 

 
Figure 2. Photovoltaic characteristics of DSSCs under simulated solar irradiation (left) and 

photocurrent action spectra (right) after monochromatic incident light for DSSCs with different types 

of TiCl4 surface treatments.  

 

Table 1. Photovoltaic parameters for DSSC based on SQ-41 having TiCl4 surface treatments 

conducted on different surfaces of photoanode.  

Treatment Conditions Efficiency 

(%) 

FF Voc 

(V) 

Jsc  

(mA/cm2) 

No surface Treatment 1.79 0.74 0.58 4.15 

Treatment on FTO glass 

only 

1.93 0.75 0.59 4.37 

Treatment on TiO2 layer 

only  

2.88 0.70 0.58 7.04 

Treatment on FTO glass 

and TiO2 layer both 

3.54 0.69 0.59 8.74 

 

3.3. Thickness of Mesoporous TiO2 Layer 

Sensitizing dyes play most important role of photon harvesting in DSSCs. In order to have sufficient 

photon harvesting, mesoporous TiO2 has been most extensively used for adsorption of dyes owing to its 

wide band gap and very high surface area. To achieve the best performance of DSSC an optimum 

thickness of the TiO2 layer is highly desired. Lower thickness leads to non-optimal dye loading while 

too high thickness hampers the diffusion of redox species through the nanopores promoting the chances 

of charge carrier recombination. This optimal thickness depends on the nature of dye as well as particle 

size and preparation conditions of the mesoporous TiO2. Using Ruthenium complex based dyes (N-719) 

Kang et al have demonstrated the need of 15 m thick TiO2 layer for best efficiency [17]. On the other 

hand, Yamaguchi et al used 34 m thick mesoporous TiO2 for the optimum efficiency of DSSC using 

Black dye [18]. Thus an optimization of TiO2 layer thickness especially for this class of dyes is highly 

desired owing to their very high molar absorption coefficient where relatively thinner films are capable 

of absorbing sufficient photons. Keeping this in mind, DSSCs were fabricated by varying the thickness 

of mesoporous TiO2 layer keeping other variables like dye, dye concentration, surface treatment, 

electrolyte (Electrolyte B), CDCA concentration etc. constant. Fig. 3 exhibits a typical I-V characteristic 

of the DSSC having the TiO2 layer thickness of 10 m giving a power conversion efficiency of 3.39 % 

under simulated solar irradiation. Photovoltaic characteristics of the DSSCs for other thicknesses of 

IJEGMBE 2015 IOP Publishing
Journal of Physics: Conference Series 704 (2016) 012002 doi:10.1088/1742-6596/704/1/012002

4



 

 

 

 

 

 

TiO2 were also measured and photovoltaic parameters in terms of Jsc, Voc, FF and  are summarized in 

the table 2. A perusal of the inset of Fig. 2 indicating thickness dependence of reveals that increase in 

the thickness leads to fast increase in the  up to about 10-14 m and starts a sharp decline after 14 m. 

This indicates at least 10 m of mesoporous TiO2 thickness is needed to achieve optimum efficiency in 

spite of such a high molar extinction coefficient of this dye. 

          

 
Figure 3. Photovoltaic characteristic of DSSC with TiO2 layer thickness of 10 m under simulated 

solar irradiation. Inset shows the thickness dependence of photoconversion efficiency 

 

Table 2. Photovoltaic parameters for DSSC based on SQ-41 with varying thickness of the 

mesoporous TiO2 layer. 

Thickness 2 m 6 m 8 m 10 m 14 m 19 m 

Efficiency (%) 0.94 2.57 2.61 3.39 3.76 2.35 

FF 0.72 0.61 0.62 0.68 0.67 0.62 

Voc (V) 0.55 0.57 0.56 0.57 0.59 0.58 

Jsc (mA/cm2) 2.40 7.35 7.51 8.76 9.58 6.52 

 

3.4. Influence of Nature of Electrolyte 

Redox electrolyte plays a vital role in the dye regeneration during DSSC operation and affects all 

of photovoltaic parameters like Jsc, Voc and FF finally controlling the . Amongst several discovered 

electrolytes for DSSCs till date, iodine based redox couple I-/I3
- are still preferred for research 

laboratory and exhibited its dominance until 2010 [19]. This electrolyte works well with 

approximately all kinds of sensitizing dyes used in DSSCs. It is unlike to cobalt complex based redox 

shuttles needing specific dye design especially dyes bearing larger number of long alkyl chains [20]. 

It mainly contains the sources of I- and I3
- to form redox couple, I- supplying ionic liquid for long term 

stability, some additives to tune the energetics of mesoporous TiO2 and finally a suitable solvent. In 

this investigation, three different recipes of iodine based redox electrolyte (Electrolyte A, B and C) 

which have been most extensively utilized in DSSC research for Ru dyes have been attempted and 

their influence on photovoltaic performance was explored. In order to predict the main role played by 

electrolytes and its constituents, other DSSC fabrication parameters like thickness of mesoporous 

TiO2 layer (12-13 m), dye (SQ-41), CDCA to dye ratio (50), TiCl4 surface treatments etc. were fixed 
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varying only the type of electrolyte. Figure 4 depicts the I-V characteristics of DSSCs using different 

types of electrolyte bearing I-/I3
- redox couple along with photovoltaic parameters shown in the table 

3. A perusal of Fig. 4 and table 3 clearly corroborates that even under similar other DSSC fabrication 

parameters, only change in the recipe and components of iodine based redox electrolyte affects the 

overall photovoltaic performance. Only change in the concentration of TBP as additive and nature of 

ionic liquid for electrolyte A leads to enhancement of both of the observed Jsc and Voc as compared to 

electrolyte B suggesting the importance of judicious selection of particular electrolyte system in order 

to achieve the optimum photo conversion efficiency.    

 

Figure 4. Photovoltaic characteristics of DSSC using SQ-41 in the presence of different iodine based 

redox electrolyte.  

 

Table 2. Photovoltaic parameters for DSSC based on SQ-41 with different types of I-/I3
- based redox 

electrolytes 

Electrolytes Type-A Type-B Type-C 

Efficiency (%) 3.50 2.70 2.77 

FF 0.65 0.70 0.63 

Voc (V) 0.59 0.56 0.60 

Jsc (mA/cm2) 9.10 6.94 7.37 

4. Conclusions 

It has been demonstrated that control and optimization of DSSC fabrication parameters are highly 

desired in order to achieve optimum photoconversion efficiency for a particular class of dye sensitizer.  

Utilization of CDCA as coadsorber leads to enhanced photoconversion efficiency and 50-100 times of 

CDCA with respect to dye concentration was found to be optimum.  TiCl4 surface treatment was found 

to control the overall photoconversion efficiency and as compared to FTO layer, TiCl4 treatment of 

mesoporous TiO2 layer was found to play dominant role to achieve the best efficiency. Finally 

mesoporous TiO2 layer having thickness in the range of 10-14 m and iodine based redox electrolyte A 

was found to be optimum for DSSCs using far-red sensitive SQ-41 dye as photosensitizer.  
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